मुख्य सामग्रीमा स्किप गर्नुहोस्
a, b को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a-b=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट b घटाउनुहोस्।
a-b=0,a+b=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
a-b=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको a लाई अलग गरी a का लागि हल गर्नुहोस्।
a=b
समीकरणको दुबैतिर b जोड्नुहोस्।
b+b=5
b लाई a ले अर्को समीकरण a+b=5 मा प्रतिस्थापन गर्नुहोस्।
2b=5
b मा b जोड्नुहोस्
b=\frac{5}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
a=\frac{5}{2}
a=b मा b लाई \frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले a लाई सिधै हल गर्न सक्नुहुन्छ।
a=\frac{5}{2},b=\frac{5}{2}
अब प्रणाली समाधान भएको छ।
a-b=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट b घटाउनुहोस्।
a-b=0,a+b=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-1\\1&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
a=\frac{5}{2},b=\frac{5}{2}
मेट्रिक्स तत्त्वहरू a र b लाई ता्नुहोस्।
a-b=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट b घटाउनुहोस्।
a-b=0,a+b=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
a-a-b-b=-5
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर a-b=0 बाट a+b=5 घटाउनुहोस्।
-b-b=-5
-a मा a जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै a र -a राशी रद्द हुन्छन्।
-2b=-5
-b मा -b जोड्नुहोस्
b=\frac{5}{2}
दुबैतिर -2 ले भाग गर्नुहोस्।
a+\frac{5}{2}=5
a+b=5 मा b लाई \frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले a लाई सिधै हल गर्न सक्नुहुन्छ।
a=\frac{5}{2}
समीकरणको दुबैतिरबाट \frac{5}{2} घटाउनुहोस्।
a=\frac{5}{2},b=\frac{5}{2}
अब प्रणाली समाधान भएको छ।