मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+20y=800
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
0=x+15y
दोस्रो समीकरणलाई मनन गर्नुहोस्। 0 प्राप्त गर्नको लागि 0 र 0 गुणा गर्नुहोस्।
x+15y=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
x+20y=800,x+15y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+20y=800
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-20y+800
समीकरणको दुबैतिरबाट 20y घटाउनुहोस्।
-20y+800+15y=0
-20y+800 लाई x ले अर्को समीकरण x+15y=0 मा प्रतिस्थापन गर्नुहोस्।
-5y+800=0
15y मा -20y जोड्नुहोस्
-5y=-800
समीकरणको दुबैतिरबाट 800 घटाउनुहोस्।
y=160
दुबैतिर -5 ले भाग गर्नुहोस्।
x=-20\times 160+800
x=-20y+800 मा y लाई 160 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-3200+800
-20 लाई 160 पटक गुणन गर्नुहोस्।
x=-2400
-3200 मा 800 जोड्नुहोस्
x=-2400,y=160
अब प्रणाली समाधान भएको छ।
x+20y=800
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
0=x+15y
दोस्रो समीकरणलाई मनन गर्नुहोस्। 0 प्राप्त गर्नको लागि 0 र 0 गुणा गर्नुहोस्।
x+15y=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
x+20y=800,x+15y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&20\\1&15\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800\\\frac{1}{5}\times 800\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2400\\160\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-2400,y=160
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+20y=800
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
0=x+15y
दोस्रो समीकरणलाई मनन गर्नुहोस्। 0 प्राप्त गर्नको लागि 0 र 0 गुणा गर्नुहोस्।
x+15y=0
साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
x+20y=800,x+15y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-x+20y-15y=800
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x+20y=800 बाट x+15y=0 घटाउनुहोस्।
20y-15y=800
-x मा x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै x र -x राशी रद्द हुन्छन्।
5y=800
-15y मा 20y जोड्नुहोस्
y=160
दुबैतिर 5 ले भाग गर्नुहोस्।
x+15\times 160=0
x+15y=0 मा y लाई 160 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+2400=0
15 लाई 160 पटक गुणन गर्नुहोस्।
x=-2400
समीकरणको दुबैतिरबाट 2400 घटाउनुहोस्।
x=-2400,y=160
अब प्रणाली समाधान भएको छ।