x, y को लागि हल गर्नुहोस्
x=-1
y=-2
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
8x-9y=10,-5x-3y=11
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
8x-9y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
8x=9y+10
समीकरणको दुबैतिर 9y जोड्नुहोस्।
x=\frac{1}{8}\left(9y+10\right)
दुबैतिर 8 ले भाग गर्नुहोस्।
x=\frac{9}{8}y+\frac{5}{4}
\frac{1}{8} लाई 9y+10 पटक गुणन गर्नुहोस्।
-5\left(\frac{9}{8}y+\frac{5}{4}\right)-3y=11
\frac{9y}{8}+\frac{5}{4} लाई x ले अर्को समीकरण -5x-3y=11 मा प्रतिस्थापन गर्नुहोस्।
-\frac{45}{8}y-\frac{25}{4}-3y=11
-5 लाई \frac{9y}{8}+\frac{5}{4} पटक गुणन गर्नुहोस्।
-\frac{69}{8}y-\frac{25}{4}=11
-3y मा -\frac{45y}{8} जोड्नुहोस्
-\frac{69}{8}y=\frac{69}{4}
समीकरणको दुबैतिर \frac{25}{4} जोड्नुहोस्।
y=-2
समीकरणको दुबैतिर -\frac{69}{8} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{9}{8}\left(-2\right)+\frac{5}{4}
x=\frac{9}{8}y+\frac{5}{4} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-9+5}{4}
\frac{9}{8} लाई -2 पटक गुणन गर्नुहोस्।
x=-1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{4} लाई -\frac{9}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-1,y=-2
अब प्रणाली समाधान भएको छ।
8x-9y=10,-5x-3y=11
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right))\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\-5&-3\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8\left(-3\right)-\left(-9\left(-5\right)\right)}&-\frac{-9}{8\left(-3\right)-\left(-9\left(-5\right)\right)}\\-\frac{-5}{8\left(-3\right)-\left(-9\left(-5\right)\right)}&\frac{8}{8\left(-3\right)-\left(-9\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&-\frac{3}{23}\\-\frac{5}{69}&-\frac{8}{69}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 10-\frac{3}{23}\times 11\\-\frac{5}{69}\times 10-\frac{8}{69}\times 11\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
8x-9y=10,-5x-3y=11
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-5\times 8x-5\left(-9\right)y=-5\times 10,8\left(-5\right)x+8\left(-3\right)y=8\times 11
8x र -5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 8 ले गुणन गर्नुहोस्।
-40x+45y=-50,-40x-24y=88
सरल गर्नुहोस्।
-40x+40x+45y+24y=-50-88
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -40x+45y=-50 बाट -40x-24y=88 घटाउनुहोस्।
45y+24y=-50-88
40x मा -40x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -40x र 40x राशी रद्द हुन्छन्।
69y=-50-88
24y मा 45y जोड्नुहोस्
69y=-138
-88 मा -50 जोड्नुहोस्
y=-2
दुबैतिर 69 ले भाग गर्नुहोस्।
-5x-3\left(-2\right)=11
-5x-3y=11 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-5x+6=11
-3 लाई -2 पटक गुणन गर्नुहोस्।
-5x=5
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
x=-1
दुबैतिर -5 ले भाग गर्नुहोस्।
x=-1,y=-2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}