मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

7x+y=-9,-3x-y=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
7x+y=-9
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
7x=-y-9
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{7}\left(-y-9\right)
दुबैतिर 7 ले भाग गर्नुहोस्।
x=-\frac{1}{7}y-\frac{9}{7}
\frac{1}{7} लाई -y-9 पटक गुणन गर्नुहोस्।
-3\left(-\frac{1}{7}y-\frac{9}{7}\right)-y=5
\frac{-y-9}{7} लाई x ले अर्को समीकरण -3x-y=5 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{7}y+\frac{27}{7}-y=5
-3 लाई \frac{-y-9}{7} पटक गुणन गर्नुहोस्।
-\frac{4}{7}y+\frac{27}{7}=5
-y मा \frac{3y}{7} जोड्नुहोस्
-\frac{4}{7}y=\frac{8}{7}
समीकरणको दुबैतिरबाट \frac{27}{7} घटाउनुहोस्।
y=-2
समीकरणको दुबैतिर -\frac{4}{7} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{7}\left(-2\right)-\frac{9}{7}
x=-\frac{1}{7}y-\frac{9}{7} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{2-9}{7}
-\frac{1}{7} लाई -2 पटक गुणन गर्नुहोस्।
x=-1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{9}{7} लाई \frac{2}{7} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-1,y=-2
अब प्रणाली समाधान भएको छ।
7x+y=-9,-3x-y=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}7&1\\-3&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-3\right)}&-\frac{1}{7\left(-1\right)-\left(-3\right)}\\-\frac{-3}{7\left(-1\right)-\left(-3\right)}&\frac{7}{7\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&-\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-9\right)+\frac{1}{4}\times 5\\-\frac{3}{4}\left(-9\right)-\frac{7}{4}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
7x+y=-9,-3x-y=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-3\times 7x-3y=-3\left(-9\right),7\left(-3\right)x+7\left(-1\right)y=7\times 5
7x र -3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 7 ले गुणन गर्नुहोस्।
-21x-3y=27,-21x-7y=35
सरल गर्नुहोस्।
-21x+21x-3y+7y=27-35
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -21x-3y=27 बाट -21x-7y=35 घटाउनुहोस्।
-3y+7y=27-35
21x मा -21x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -21x र 21x राशी रद्द हुन्छन्।
4y=27-35
7y मा -3y जोड्नुहोस्
4y=-8
-35 मा 27 जोड्नुहोस्
y=-2
दुबैतिर 4 ले भाग गर्नुहोस्।
-3x-\left(-2\right)=5
-3x-y=5 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-3x=3
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=-1
दुबैतिर -3 ले भाग गर्नुहोस्।
x=-1,y=-2
अब प्रणाली समाधान भएको छ।