x, y को लागि हल गर्नुहोस्
x=6
y=-4
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x+\frac{y}{2}=4
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{y}{2} थप्नुहोस्।
2x+y=8
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
7x+6y=18,2x+y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
7x+6y=18
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
7x=-6y+18
समीकरणको दुबैतिरबाट 6y घटाउनुहोस्।
x=\frac{1}{7}\left(-6y+18\right)
दुबैतिर 7 ले भाग गर्नुहोस्।
x=-\frac{6}{7}y+\frac{18}{7}
\frac{1}{7} लाई -6y+18 पटक गुणन गर्नुहोस्।
2\left(-\frac{6}{7}y+\frac{18}{7}\right)+y=8
\frac{-6y+18}{7} लाई x ले अर्को समीकरण 2x+y=8 मा प्रतिस्थापन गर्नुहोस्।
-\frac{12}{7}y+\frac{36}{7}+y=8
2 लाई \frac{-6y+18}{7} पटक गुणन गर्नुहोस्।
-\frac{5}{7}y+\frac{36}{7}=8
y मा -\frac{12y}{7} जोड्नुहोस्
-\frac{5}{7}y=\frac{20}{7}
समीकरणको दुबैतिरबाट \frac{36}{7} घटाउनुहोस्।
y=-4
समीकरणको दुबैतिर -\frac{5}{7} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{6}{7}\left(-4\right)+\frac{18}{7}
x=-\frac{6}{7}y+\frac{18}{7} मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{24+18}{7}
-\frac{6}{7} लाई -4 पटक गुणन गर्नुहोस्।
x=6
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{18}{7} लाई \frac{24}{7} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=6,y=-4
अब प्रणाली समाधान भएको छ।
x+\frac{y}{2}=4
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{y}{2} थप्नुहोस्।
2x+y=8
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
7x+6y=18,2x+y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}7&6\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}7&6\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}7&6\\2&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&6\\2&1\end{matrix}\right))\left(\begin{matrix}18\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-6\times 2}&-\frac{6}{7-6\times 2}\\-\frac{2}{7-6\times 2}&\frac{7}{7-6\times 2}\end{matrix}\right)\left(\begin{matrix}18\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{6}{5}\\\frac{2}{5}&-\frac{7}{5}\end{matrix}\right)\left(\begin{matrix}18\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 18+\frac{6}{5}\times 8\\\frac{2}{5}\times 18-\frac{7}{5}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=6,y=-4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+\frac{y}{2}=4
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा \frac{y}{2} थप्नुहोस्।
2x+y=8
समीकरणको दुबैतिर 2 ले गुणन गर्नुहोस्।
7x+6y=18,2x+y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\times 7x+2\times 6y=2\times 18,7\times 2x+7y=7\times 8
7x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 7 ले गुणन गर्नुहोस्।
14x+12y=36,14x+7y=56
सरल गर्नुहोस्।
14x-14x+12y-7y=36-56
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 14x+12y=36 बाट 14x+7y=56 घटाउनुहोस्।
12y-7y=36-56
-14x मा 14x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 14x र -14x राशी रद्द हुन्छन्।
5y=36-56
-7y मा 12y जोड्नुहोस्
5y=-20
-56 मा 36 जोड्नुहोस्
y=-4
दुबैतिर 5 ले भाग गर्नुहोस्।
2x-4=8
2x+y=8 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x=12
समीकरणको दुबैतिर 4 जोड्नुहोस्।
x=6
दुबैतिर 2 ले भाग गर्नुहोस्।
x=6,y=-4
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}