मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x-y=7,3x+2y=12
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x-y=7
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=y+7
समीकरणको दुबैतिर y जोड्नुहोस्।
x=\frac{1}{5}\left(y+7\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=\frac{1}{5}y+\frac{7}{5}
\frac{1}{5} लाई y+7 पटक गुणन गर्नुहोस्।
3\left(\frac{1}{5}y+\frac{7}{5}\right)+2y=12
\frac{7+y}{5} लाई x ले अर्को समीकरण 3x+2y=12 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{5}y+\frac{21}{5}+2y=12
3 लाई \frac{7+y}{5} पटक गुणन गर्नुहोस्।
\frac{13}{5}y+\frac{21}{5}=12
2y मा \frac{3y}{5} जोड्नुहोस्
\frac{13}{5}y=\frac{39}{5}
समीकरणको दुबैतिरबाट \frac{21}{5} घटाउनुहोस्।
y=3
समीकरणको दुबैतिर \frac{13}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{1}{5}\times 3+\frac{7}{5}
x=\frac{1}{5}y+\frac{7}{5} मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{3+7}{5}
\frac{1}{5} लाई 3 पटक गुणन गर्नुहोस्।
x=2
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{7}{5} लाई \frac{3}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=2,y=3
अब प्रणाली समाधान भएको छ।
5x-y=7,3x+2y=12
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\12\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&-1\\3&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\12\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\right)}&-\frac{-1}{5\times 2-\left(-3\right)}\\-\frac{3}{5\times 2-\left(-3\right)}&\frac{5}{5\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\12\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{3}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}7\\12\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 7+\frac{1}{13}\times 12\\-\frac{3}{13}\times 7+\frac{5}{13}\times 12\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x-y=7,3x+2y=12
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 5x+3\left(-1\right)y=3\times 7,5\times 3x+5\times 2y=5\times 12
5x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
15x-3y=21,15x+10y=60
सरल गर्नुहोस्।
15x-15x-3y-10y=21-60
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 15x-3y=21 बाट 15x+10y=60 घटाउनुहोस्।
-3y-10y=21-60
-15x मा 15x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 15x र -15x राशी रद्द हुन्छन्।
-13y=21-60
-10y मा -3y जोड्नुहोस्
-13y=-39
-60 मा 21 जोड्नुहोस्
y=3
दुबैतिर -13 ले भाग गर्नुहोस्।
3x+2\times 3=12
3x+2y=12 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x+6=12
2 लाई 3 पटक गुणन गर्नुहोस्।
3x=6
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
x=2
दुबैतिर 3 ले भाग गर्नुहोस्।
x=2,y=3
अब प्रणाली समाधान भएको छ।