x, y को लागि हल गर्नुहोस्
x=-\frac{2}{3}\approx -0.666666667
y=-\frac{1}{3}\approx -0.333333333
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
5x-4y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4y घटाउनुहोस्।
5y+1-x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
5y-x=-1
दुवै छेउबाट 1 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
5x-4y=-2,-x+5y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x-4y=-2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=4y-2
समीकरणको दुबैतिर 4y जोड्नुहोस्।
x=\frac{1}{5}\left(4y-2\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=\frac{4}{5}y-\frac{2}{5}
\frac{1}{5} लाई 4y-2 पटक गुणन गर्नुहोस्।
-\left(\frac{4}{5}y-\frac{2}{5}\right)+5y=-1
\frac{4y-2}{5} लाई x ले अर्को समीकरण -x+5y=-1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{4}{5}y+\frac{2}{5}+5y=-1
-1 लाई \frac{4y-2}{5} पटक गुणन गर्नुहोस्।
\frac{21}{5}y+\frac{2}{5}=-1
5y मा -\frac{4y}{5} जोड्नुहोस्
\frac{21}{5}y=-\frac{7}{5}
समीकरणको दुबैतिरबाट \frac{2}{5} घटाउनुहोस्।
y=-\frac{1}{3}
समीकरणको दुबैतिर \frac{21}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{4}{5}\left(-\frac{1}{3}\right)-\frac{2}{5}
x=\frac{4}{5}y-\frac{2}{5} मा y लाई -\frac{1}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{4}{15}-\frac{2}{5}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{4}{5} लाई -\frac{1}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-\frac{2}{3}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{2}{5} लाई -\frac{4}{15} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-\frac{2}{3},y=-\frac{1}{3}
अब प्रणाली समाधान भएको छ।
5x-4y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4y घटाउनुहोस्।
5y+1-x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
5y-x=-1
दुवै छेउबाट 1 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
5x-4y=-2,-x+5y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&-4\\-1&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}&-\frac{-4}{5\times 5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-4\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{4}{21}\\\frac{1}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-2\right)+\frac{4}{21}\left(-1\right)\\\frac{1}{21}\left(-2\right)+\frac{5}{21}\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{1}{3}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{2}{3},y=-\frac{1}{3}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x-4y=-2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4y घटाउनुहोस्।
5y+1-x=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
5y-x=-1
दुवै छेउबाट 1 घटाउनुहोस्। शून्यबाट कुनै अंक घटाउँदा सोही अंक बराबरको ऋणात्मक परिणाम आउँछ।
5x-4y=-2,-x+5y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-5x-\left(-4y\right)=-\left(-2\right),5\left(-1\right)x+5\times 5y=5\left(-1\right)
5x र -x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
-5x+4y=2,-5x+25y=-5
सरल गर्नुहोस्।
-5x+5x+4y-25y=2+5
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -5x+4y=2 बाट -5x+25y=-5 घटाउनुहोस्।
4y-25y=2+5
5x मा -5x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -5x र 5x राशी रद्द हुन्छन्।
-21y=2+5
-25y मा 4y जोड्नुहोस्
-21y=7
5 मा 2 जोड्नुहोस्
y=-\frac{1}{3}
दुबैतिर -21 ले भाग गर्नुहोस्।
-x+5\left(-\frac{1}{3}\right)=-1
-x+5y=-1 मा y लाई -\frac{1}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-x-\frac{5}{3}=-1
5 लाई -\frac{1}{3} पटक गुणन गर्नुहोस्।
-x=\frac{2}{3}
समीकरणको दुबैतिर \frac{5}{3} जोड्नुहोस्।
x=-\frac{2}{3}
दुबैतिर -1 ले भाग गर्नुहोस्।
x=-\frac{2}{3},y=-\frac{1}{3}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}