मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x+y=19,2x+y=1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x+y=19
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=-y+19
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{5}\left(-y+19\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{1}{5}y+\frac{19}{5}
\frac{1}{5} लाई -y+19 पटक गुणन गर्नुहोस्।
2\left(-\frac{1}{5}y+\frac{19}{5}\right)+y=1
\frac{-y+19}{5} लाई x ले अर्को समीकरण 2x+y=1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{2}{5}y+\frac{38}{5}+y=1
2 लाई \frac{-y+19}{5} पटक गुणन गर्नुहोस्।
\frac{3}{5}y+\frac{38}{5}=1
y मा -\frac{2y}{5} जोड्नुहोस्
\frac{3}{5}y=-\frac{33}{5}
समीकरणको दुबैतिरबाट \frac{38}{5} घटाउनुहोस्।
y=-11
समीकरणको दुबैतिर \frac{3}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{5}\left(-11\right)+\frac{19}{5}
x=-\frac{1}{5}y+\frac{19}{5} मा y लाई -11 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{11+19}{5}
-\frac{1}{5} लाई -11 पटक गुणन गर्नुहोस्।
x=6
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{19}{5} लाई \frac{11}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=6,y=-11
अब प्रणाली समाधान भएको छ।
5x+y=19,2x+y=1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}5&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&1\\2&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2}&-\frac{1}{5-2}\\-\frac{2}{5-2}&\frac{5}{5-2}\end{matrix}\right)\left(\begin{matrix}19\\1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{2}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}19\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 19-\frac{1}{3}\\-\frac{2}{3}\times 19+\frac{5}{3}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-11\end{matrix}\right)
हिसाब गर्नुहोस्।
x=6,y=-11
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x+y=19,2x+y=1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5x-2x+y-y=19-1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5x+y=19 बाट 2x+y=1 घटाउनुहोस्।
5x-2x=19-1
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
3x=19-1
-2x मा 5x जोड्नुहोस्
3x=18
-1 मा 19 जोड्नुहोस्
x=6
दुबैतिर 3 ले भाग गर्नुहोस्।
2\times 6+y=1
2x+y=1 मा x लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
12+y=1
2 लाई 6 पटक गुणन गर्नुहोस्।
y=-11
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
x=6,y=-11
अब प्रणाली समाधान भएको छ।