मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x+2y=10,4x+y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x+2y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=-2y+10
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
x=\frac{1}{5}\left(-2y+10\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{2}{5}y+2
\frac{1}{5} लाई -2y+10 पटक गुणन गर्नुहोस्।
4\left(-\frac{2}{5}y+2\right)+y=8
-\frac{2y}{5}+2 लाई x ले अर्को समीकरण 4x+y=8 मा प्रतिस्थापन गर्नुहोस्।
-\frac{8}{5}y+8+y=8
4 लाई -\frac{2y}{5}+2 पटक गुणन गर्नुहोस्।
-\frac{3}{5}y+8=8
y मा -\frac{8y}{5} जोड्नुहोस्
-\frac{3}{5}y=0
समीकरणको दुबैतिरबाट 8 घटाउनुहोस्।
y=0
समीकरणको दुबैतिर -\frac{3}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=2
x=-\frac{2}{5}y+2 मा y लाई 0 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2,y=0
अब प्रणाली समाधान भएको छ।
5x+2y=10,4x+y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&2\\4&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2\times 4}&-\frac{2}{5-2\times 4}\\-\frac{4}{5-2\times 4}&\frac{5}{5-2\times 4}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 10+\frac{2}{3}\times 8\\\frac{4}{3}\times 10-\frac{5}{3}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=0
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x+2y=10,4x+y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4\times 5x+4\times 2y=4\times 10,5\times 4x+5y=5\times 8
5x र 4x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
20x+8y=40,20x+5y=40
सरल गर्नुहोस्।
20x-20x+8y-5y=40-40
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 20x+8y=40 बाट 20x+5y=40 घटाउनुहोस्।
8y-5y=40-40
-20x मा 20x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 20x र -20x राशी रद्द हुन्छन्।
3y=40-40
-5y मा 8y जोड्नुहोस्
3y=0
-40 मा 40 जोड्नुहोस्
y=0
दुबैतिर 3 ले भाग गर्नुहोस्।
4x=8
4x+y=8 मा y लाई 0 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2
दुबैतिर 4 ले भाग गर्नुहोस्।
x=2,y=0
अब प्रणाली समाधान भएको छ।