x, y को लागि हल गर्नुहोस्
x = \frac{22}{19} = 1\frac{3}{19} \approx 1.157894737
y = \frac{23}{19} = 1\frac{4}{19} \approx 1.210526316
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4x-3y=1,5x+y=7
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x-3y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=3y+1
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{4}\left(3y+1\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=\frac{3}{4}y+\frac{1}{4}
\frac{1}{4} लाई 3y+1 पटक गुणन गर्नुहोस्।
5\left(\frac{3}{4}y+\frac{1}{4}\right)+y=7
\frac{3y+1}{4} लाई x ले अर्को समीकरण 5x+y=7 मा प्रतिस्थापन गर्नुहोस्।
\frac{15}{4}y+\frac{5}{4}+y=7
5 लाई \frac{3y+1}{4} पटक गुणन गर्नुहोस्।
\frac{19}{4}y+\frac{5}{4}=7
y मा \frac{15y}{4} जोड्नुहोस्
\frac{19}{4}y=\frac{23}{4}
समीकरणको दुबैतिरबाट \frac{5}{4} घटाउनुहोस्।
y=\frac{23}{19}
समीकरणको दुबैतिर \frac{19}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{3}{4}\times \frac{23}{19}+\frac{1}{4}
x=\frac{3}{4}y+\frac{1}{4} मा y लाई \frac{23}{19} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{69}{76}+\frac{1}{4}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{3}{4} लाई \frac{23}{19} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{22}{19}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{4} लाई \frac{69}{76} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{22}{19},y=\frac{23}{19}
अब प्रणाली समाधान भएको छ।
4x-3y=1,5x+y=7
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}4&-3\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&-3\\5&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&1\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\times 5\right)}&-\frac{-3}{4-\left(-3\times 5\right)}\\-\frac{5}{4-\left(-3\times 5\right)}&\frac{4}{4-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&\frac{3}{19}\\-\frac{5}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}+\frac{3}{19}\times 7\\-\frac{5}{19}+\frac{4}{19}\times 7\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{19}\\\frac{23}{19}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{22}{19},y=\frac{23}{19}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x-3y=1,5x+y=7
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5\times 4x+5\left(-3\right)y=5,4\times 5x+4y=4\times 7
4x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
20x-15y=5,20x+4y=28
सरल गर्नुहोस्।
20x-20x-15y-4y=5-28
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 20x-15y=5 बाट 20x+4y=28 घटाउनुहोस्।
-15y-4y=5-28
-20x मा 20x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 20x र -20x राशी रद्द हुन्छन्।
-19y=5-28
-4y मा -15y जोड्नुहोस्
-19y=-23
-28 मा 5 जोड्नुहोस्
y=\frac{23}{19}
दुबैतिर -19 ले भाग गर्नुहोस्।
5x+\frac{23}{19}=7
5x+y=7 मा y लाई \frac{23}{19} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
5x=\frac{110}{19}
समीकरणको दुबैतिरबाट \frac{23}{19} घटाउनुहोस्।
x=\frac{22}{19}
दुबैतिर 5 ले भाग गर्नुहोस्।
x=\frac{22}{19},y=\frac{23}{19}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}