मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x-3y=1,5x+3y=-10
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x-3y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=3y+1
समीकरणको दुबैतिर 3y जोड्नुहोस्।
x=\frac{1}{4}\left(3y+1\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=\frac{3}{4}y+\frac{1}{4}
\frac{1}{4} लाई 3y+1 पटक गुणन गर्नुहोस्।
5\left(\frac{3}{4}y+\frac{1}{4}\right)+3y=-10
\frac{3y+1}{4} लाई x ले अर्को समीकरण 5x+3y=-10 मा प्रतिस्थापन गर्नुहोस्।
\frac{15}{4}y+\frac{5}{4}+3y=-10
5 लाई \frac{3y+1}{4} पटक गुणन गर्नुहोस्।
\frac{27}{4}y+\frac{5}{4}=-10
3y मा \frac{15y}{4} जोड्नुहोस्
\frac{27}{4}y=-\frac{45}{4}
समीकरणको दुबैतिरबाट \frac{5}{4} घटाउनुहोस्।
y=-\frac{5}{3}
समीकरणको दुबैतिर \frac{27}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{3}{4}\left(-\frac{5}{3}\right)+\frac{1}{4}
x=\frac{3}{4}y+\frac{1}{4} मा y लाई -\frac{5}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-5+1}{4}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{3}{4} लाई -\frac{5}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{4} लाई -\frac{5}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-1,y=-\frac{5}{3}
अब प्रणाली समाधान भएको छ।
4x-3y=1,5x+3y=-10
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-10\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&-3\\5&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1\\-10\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-3\times 5\right)}&-\frac{-3}{4\times 3-\left(-3\times 5\right)}\\-\frac{5}{4\times 3-\left(-3\times 5\right)}&\frac{4}{4\times 3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{1}{9}\\-\frac{5}{27}&\frac{4}{27}\end{matrix}\right)\left(\begin{matrix}1\\-10\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}+\frac{1}{9}\left(-10\right)\\-\frac{5}{27}+\frac{4}{27}\left(-10\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{5}{3}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-1,y=-\frac{5}{3}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x-3y=1,5x+3y=-10
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5\times 4x+5\left(-3\right)y=5,4\times 5x+4\times 3y=4\left(-10\right)
4x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
20x-15y=5,20x+12y=-40
सरल गर्नुहोस्।
20x-20x-15y-12y=5+40
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 20x-15y=5 बाट 20x+12y=-40 घटाउनुहोस्।
-15y-12y=5+40
-20x मा 20x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 20x र -20x राशी रद्द हुन्छन्।
-27y=5+40
-12y मा -15y जोड्नुहोस्
-27y=45
40 मा 5 जोड्नुहोस्
y=-\frac{5}{3}
दुबैतिर -27 ले भाग गर्नुहोस्।
5x+3\left(-\frac{5}{3}\right)=-10
5x+3y=-10 मा y लाई -\frac{5}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
5x-5=-10
3 लाई -\frac{5}{3} पटक गुणन गर्नुहोस्।
5x=-5
समीकरणको दुबैतिर 5 जोड्नुहोस्।
x=-1
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-1,y=-\frac{5}{3}
अब प्रणाली समाधान भएको छ।