x, y को लागि हल गर्नुहोस्
x=2
y=-4
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4x+y=4,-3x-6y=18
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x+y=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=-y+4
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{4}\left(-y+4\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{1}{4}y+1
\frac{1}{4} लाई -y+4 पटक गुणन गर्नुहोस्।
-3\left(-\frac{1}{4}y+1\right)-6y=18
-\frac{y}{4}+1 लाई x ले अर्को समीकरण -3x-6y=18 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{4}y-3-6y=18
-3 लाई -\frac{y}{4}+1 पटक गुणन गर्नुहोस्।
-\frac{21}{4}y-3=18
-6y मा \frac{3y}{4} जोड्नुहोस्
-\frac{21}{4}y=21
समीकरणको दुबैतिर 3 जोड्नुहोस्।
y=-4
समीकरणको दुबैतिर -\frac{21}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{4}\left(-4\right)+1
x=-\frac{1}{4}y+1 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1+1
-\frac{1}{4} लाई -4 पटक गुणन गर्नुहोस्।
x=2
1 मा 1 जोड्नुहोस्
x=2,y=-4
अब प्रणाली समाधान भएको छ।
4x+y=4,-3x-6y=18
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\18\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&1\\-3&-6\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-\left(-3\right)}&-\frac{1}{4\left(-6\right)-\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-\left(-3\right)}&\frac{4}{4\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{21}\\-\frac{1}{7}&-\frac{4}{21}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{1}{21}\times 18\\-\frac{1}{7}\times 4-\frac{4}{21}\times 18\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=-4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x+y=4,-3x-6y=18
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-3\times 4x-3y=-3\times 4,4\left(-3\right)x+4\left(-6\right)y=4\times 18
4x र -3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
-12x-3y=-12,-12x-24y=72
सरल गर्नुहोस्।
-12x+12x-3y+24y=-12-72
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -12x-3y=-12 बाट -12x-24y=72 घटाउनुहोस्।
-3y+24y=-12-72
12x मा -12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -12x र 12x राशी रद्द हुन्छन्।
21y=-12-72
24y मा -3y जोड्नुहोस्
21y=-84
-72 मा -12 जोड्नुहोस्
y=-4
दुबैतिर 21 ले भाग गर्नुहोस्।
-3x-6\left(-4\right)=18
-3x-6y=18 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-3x+24=18
-6 लाई -4 पटक गुणन गर्नुहोस्।
-3x=-6
समीकरणको दुबैतिरबाट 24 घटाउनुहोस्।
x=2
दुबैतिर -3 ले भाग गर्नुहोस्।
x=2,y=-4
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}