मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x+6y=0,x-5y=-2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x+6y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=-6y
समीकरणको दुबैतिरबाट 6y घटाउनुहोस्।
x=\frac{1}{4}\left(-6\right)y
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y
\frac{1}{4} लाई -6y पटक गुणन गर्नुहोस्।
-\frac{3}{2}y-5y=-2
-\frac{3y}{2} लाई x ले अर्को समीकरण x-5y=-2 मा प्रतिस्थापन गर्नुहोस्।
-\frac{13}{2}y=-2
-5y मा -\frac{3y}{2} जोड्नुहोस्
y=\frac{4}{13}
समीकरणको दुबैतिर -\frac{13}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{2}\times \frac{4}{13}
x=-\frac{3}{2}y मा y लाई \frac{4}{13} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{6}{13}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{3}{2} लाई \frac{4}{13} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-\frac{6}{13},y=\frac{4}{13}
अब प्रणाली समाधान भएको छ।
4x+6y=0,x-5y=-2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&6\\1&-5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-6}&-\frac{6}{4\left(-5\right)-6}\\-\frac{1}{4\left(-5\right)-6}&\frac{4}{4\left(-5\right)-6}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{26}&\frac{3}{13}\\\frac{1}{26}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\left(-2\right)\\-\frac{2}{13}\left(-2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}\\\frac{4}{13}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{6}{13},y=\frac{4}{13}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x+6y=0,x-5y=-2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4x+6y=0,4x+4\left(-5\right)y=4\left(-2\right)
4x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
4x+6y=0,4x-20y=-8
सरल गर्नुहोस्।
4x-4x+6y+20y=8
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 4x+6y=0 बाट 4x-20y=-8 घटाउनुहोस्।
6y+20y=8
-4x मा 4x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 4x र -4x राशी रद्द हुन्छन्।
26y=8
20y मा 6y जोड्नुहोस्
y=\frac{4}{13}
दुबैतिर 26 ले भाग गर्नुहोस्।
x-5\times \frac{4}{13}=-2
x-5y=-2 मा y लाई \frac{4}{13} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x-\frac{20}{13}=-2
-5 लाई \frac{4}{13} पटक गुणन गर्नुहोस्।
x=-\frac{6}{13}
समीकरणको दुबैतिर \frac{20}{13} जोड्नुहोस्।
x=-\frac{6}{13},y=\frac{4}{13}
अब प्रणाली समाधान भएको छ।