मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x+3y=0,3x+3y=1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x+3y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=-3y
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{4}\left(-3\right)y
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{3}{4}y
\frac{1}{4} लाई -3y पटक गुणन गर्नुहोस्।
3\left(-\frac{3}{4}\right)y+3y=1
-\frac{3y}{4} लाई x ले अर्को समीकरण 3x+3y=1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{9}{4}y+3y=1
3 लाई -\frac{3y}{4} पटक गुणन गर्नुहोस्।
\frac{3}{4}y=1
3y मा -\frac{9y}{4} जोड्नुहोस्
y=\frac{4}{3}
समीकरणको दुबैतिर \frac{3}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{4}\times \frac{4}{3}
x=-\frac{3}{4}y मा y लाई \frac{4}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-1
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{3}{4} लाई \frac{4}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-1,y=\frac{4}{3}
अब प्रणाली समाधान भएको छ।
4x+3y=0,3x+3y=1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&3\\3&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{4}{3}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
x=-1,y=\frac{4}{3}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x+3y=0,3x+3y=1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4x-3x+3y-3y=-1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 4x+3y=0 बाट 3x+3y=1 घटाउनुहोस्।
4x-3x=-1
-3y मा 3y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3y र -3y राशी रद्द हुन्छन्।
x=-1
-3x मा 4x जोड्नुहोस्
3\left(-1\right)+3y=1
3x+3y=1 मा x लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
-3+3y=1
3 लाई -1 पटक गुणन गर्नुहोस्।
3y=4
समीकरणको दुबैतिर 3 जोड्नुहोस्।
y=\frac{4}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-1,y=\frac{4}{3}
अब प्रणाली समाधान भएको छ।