मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x-7y=2,-5x+2y=-13
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x-7y=2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=7y+2
समीकरणको दुबैतिर 7y जोड्नुहोस्।
x=\frac{1}{3}\left(7y+2\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{7}{3}y+\frac{2}{3}
\frac{1}{3} लाई 7y+2 पटक गुणन गर्नुहोस्।
-5\left(\frac{7}{3}y+\frac{2}{3}\right)+2y=-13
\frac{7y+2}{3} लाई x ले अर्को समीकरण -5x+2y=-13 मा प्रतिस्थापन गर्नुहोस्।
-\frac{35}{3}y-\frac{10}{3}+2y=-13
-5 लाई \frac{7y+2}{3} पटक गुणन गर्नुहोस्।
-\frac{29}{3}y-\frac{10}{3}=-13
2y मा -\frac{35y}{3} जोड्नुहोस्
-\frac{29}{3}y=-\frac{29}{3}
समीकरणको दुबैतिर \frac{10}{3} जोड्नुहोस्।
y=1
समीकरणको दुबैतिर -\frac{29}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{7+2}{3}
x=\frac{7}{3}y+\frac{2}{3} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{2}{3} लाई \frac{7}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=3,y=1
अब प्रणाली समाधान भएको छ।
3x-7y=2,-5x+2y=-13
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-13\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&-7\\-5&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\left(-5\right)\right)}&-\frac{-7}{3\times 2-\left(-7\left(-5\right)\right)}\\-\frac{-5}{3\times 2-\left(-7\left(-5\right)\right)}&\frac{3}{3\times 2-\left(-7\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}&-\frac{7}{29}\\-\frac{5}{29}&-\frac{3}{29}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}\times 2-\frac{7}{29}\left(-13\right)\\-\frac{5}{29}\times 2-\frac{3}{29}\left(-13\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-7y=2,-5x+2y=-13
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-5\times 3x-5\left(-7\right)y=-5\times 2,3\left(-5\right)x+3\times 2y=3\left(-13\right)
3x र -5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
-15x+35y=-10,-15x+6y=-39
सरल गर्नुहोस्।
-15x+15x+35y-6y=-10+39
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -15x+35y=-10 बाट -15x+6y=-39 घटाउनुहोस्।
35y-6y=-10+39
15x मा -15x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -15x र 15x राशी रद्द हुन्छन्।
29y=-10+39
-6y मा 35y जोड्नुहोस्
29y=29
39 मा -10 जोड्नुहोस्
y=1
दुबैतिर 29 ले भाग गर्नुहोस्।
-5x+2=-13
-5x+2y=-13 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-5x=-15
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
x=3
दुबैतिर -5 ले भाग गर्नुहोस्।
x=3,y=1
अब प्रणाली समाधान भएको छ।