x, y को लागि हल गर्नुहोस्
x=3
y=5
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x-5y=-16,2x+5y=31
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x-5y=-16
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=5y-16
समीकरणको दुबैतिर 5y जोड्नुहोस्।
x=\frac{1}{3}\left(5y-16\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{5}{3}y-\frac{16}{3}
\frac{1}{3} लाई 5y-16 पटक गुणन गर्नुहोस्।
2\left(\frac{5}{3}y-\frac{16}{3}\right)+5y=31
\frac{5y-16}{3} लाई x ले अर्को समीकरण 2x+5y=31 मा प्रतिस्थापन गर्नुहोस्।
\frac{10}{3}y-\frac{32}{3}+5y=31
2 लाई \frac{5y-16}{3} पटक गुणन गर्नुहोस्।
\frac{25}{3}y-\frac{32}{3}=31
5y मा \frac{10y}{3} जोड्नुहोस्
\frac{25}{3}y=\frac{125}{3}
समीकरणको दुबैतिर \frac{32}{3} जोड्नुहोस्।
y=5
समीकरणको दुबैतिर \frac{25}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{5}{3}\times 5-\frac{16}{3}
x=\frac{5}{3}y-\frac{16}{3} मा y लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{25-16}{3}
\frac{5}{3} लाई 5 पटक गुणन गर्नुहोस्।
x=3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{16}{3} लाई \frac{25}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=3,y=5
अब प्रणाली समाधान भएको छ।
3x-5y=-16,2x+5y=31
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\31\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&-5\\2&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-5\times 2\right)}&-\frac{-5}{3\times 5-\left(-5\times 2\right)}\\-\frac{2}{3\times 5-\left(-5\times 2\right)}&\frac{3}{3\times 5-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{2}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-16\right)+\frac{1}{5}\times 31\\-\frac{2}{25}\left(-16\right)+\frac{3}{25}\times 31\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=5
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-5y=-16,2x+5y=31
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\times 5y=3\times 31
3x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
6x-10y=-32,6x+15y=93
सरल गर्नुहोस्।
6x-6x-10y-15y=-32-93
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x-10y=-32 बाट 6x+15y=93 घटाउनुहोस्।
-10y-15y=-32-93
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
-25y=-32-93
-15y मा -10y जोड्नुहोस्
-25y=-125
-93 मा -32 जोड्नुहोस्
y=5
दुबैतिर -25 ले भाग गर्नुहोस्।
2x+5\times 5=31
2x+5y=31 मा y लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+25=31
5 लाई 5 पटक गुणन गर्नुहोस्।
2x=6
समीकरणको दुबैतिरबाट 25 घटाउनुहोस्।
x=3
दुबैतिर 2 ले भाग गर्नुहोस्।
x=3,y=5
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}