मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x+y=5,7x+y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+y=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-y+5
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{3}\left(-y+5\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{1}{3}y+\frac{5}{3}
\frac{1}{3} लाई -y+5 पटक गुणन गर्नुहोस्।
7\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=6
\frac{-y+5}{3} लाई x ले अर्को समीकरण 7x+y=6 मा प्रतिस्थापन गर्नुहोस्।
-\frac{7}{3}y+\frac{35}{3}+y=6
7 लाई \frac{-y+5}{3} पटक गुणन गर्नुहोस्।
-\frac{4}{3}y+\frac{35}{3}=6
y मा -\frac{7y}{3} जोड्नुहोस्
-\frac{4}{3}y=-\frac{17}{3}
समीकरणको दुबैतिरबाट \frac{35}{3} घटाउनुहोस्।
y=\frac{17}{4}
समीकरणको दुबैतिर -\frac{4}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{3}\times \frac{17}{4}+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3} मा y लाई \frac{17}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{17}{12}+\frac{5}{3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{1}{3} लाई \frac{17}{4} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{1}{4}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{3} लाई -\frac{17}{12} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{1}{4},y=\frac{17}{4}
अब प्रणाली समाधान भएको छ।
3x+y=5,7x+y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&1\\7&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-7}&-\frac{1}{3-7}\\-\frac{7}{3-7}&\frac{3}{3-7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{7}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 5+\frac{1}{4}\times 6\\\frac{7}{4}\times 5-\frac{3}{4}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{17}{4}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{1}{4},y=\frac{17}{4}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+y=5,7x+y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x-7x+y-y=5-6
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+y=5 बाट 7x+y=6 घटाउनुहोस्।
3x-7x=5-6
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
-4x=5-6
-7x मा 3x जोड्नुहोस्
-4x=-1
-6 मा 5 जोड्नुहोस्
x=\frac{1}{4}
दुबैतिर -4 ले भाग गर्नुहोस्।
7\times \frac{1}{4}+y=6
7x+y=6 मा x लाई \frac{1}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
\frac{7}{4}+y=6
7 लाई \frac{1}{4} पटक गुणन गर्नुहोस्।
y=\frac{17}{4}
समीकरणको दुबैतिरबाट \frac{7}{4} घटाउनुहोस्।
x=\frac{1}{4},y=\frac{17}{4}
अब प्रणाली समाधान भएको छ।