मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x+y=0,2x-5y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-y
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{3}\left(-1\right)y
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{1}{3}y
\frac{1}{3} लाई -y पटक गुणन गर्नुहोस्।
2\left(-\frac{1}{3}\right)y-5y=6
-\frac{y}{3} लाई x ले अर्को समीकरण 2x-5y=6 मा प्रतिस्थापन गर्नुहोस्।
-\frac{2}{3}y-5y=6
2 लाई -\frac{y}{3} पटक गुणन गर्नुहोस्।
-\frac{17}{3}y=6
-5y मा -\frac{2y}{3} जोड्नुहोस्
y=-\frac{18}{17}
समीकरणको दुबैतिर -\frac{17}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{3}\left(-\frac{18}{17}\right)
x=-\frac{1}{3}y मा y लाई -\frac{18}{17} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{6}{17}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{1}{3} लाई -\frac{18}{17} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{6}{17},y=-\frac{18}{17}
अब प्रणाली समाधान भएको छ।
3x+y=0,2x-5y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&1\\2&-5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{1}{3\left(-5\right)-2}\\-\frac{2}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{2}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 6\\-\frac{3}{17}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{17}\\-\frac{18}{17}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{6}{17},y=-\frac{18}{17}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+y=0,2x-5y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\times 3x+2y=0,3\times 2x+3\left(-5\right)y=3\times 6
3x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
6x+2y=0,6x-15y=18
सरल गर्नुहोस्।
6x-6x+2y+15y=-18
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x+2y=0 बाट 6x-15y=18 घटाउनुहोस्।
2y+15y=-18
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
17y=-18
15y मा 2y जोड्नुहोस्
y=-\frac{18}{17}
दुबैतिर 17 ले भाग गर्नुहोस्।
2x-5\left(-\frac{18}{17}\right)=6
2x-5y=6 मा y लाई -\frac{18}{17} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+\frac{90}{17}=6
-5 लाई -\frac{18}{17} पटक गुणन गर्नुहोस्।
2x=\frac{12}{17}
समीकरणको दुबैतिरबाट \frac{90}{17} घटाउनुहोस्।
x=\frac{6}{17}
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{6}{17},y=-\frac{18}{17}
अब प्रणाली समाधान भएको छ।