x, y को लागि हल गर्नुहोस्
x = \frac{35}{11} = 3\frac{2}{11} \approx 3.181818182
y = -\frac{18}{11} = -1\frac{7}{11} \approx -1.636363636
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x+4y=3,8x+7y=14
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+4y=3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-4y+3
समीकरणको दुबैतिरबाट 4y घटाउनुहोस्।
x=\frac{1}{3}\left(-4y+3\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{4}{3}y+1
\frac{1}{3} लाई -4y+3 पटक गुणन गर्नुहोस्।
8\left(-\frac{4}{3}y+1\right)+7y=14
-\frac{4y}{3}+1 लाई x ले अर्को समीकरण 8x+7y=14 मा प्रतिस्थापन गर्नुहोस्।
-\frac{32}{3}y+8+7y=14
8 लाई -\frac{4y}{3}+1 पटक गुणन गर्नुहोस्।
-\frac{11}{3}y+8=14
7y मा -\frac{32y}{3} जोड्नुहोस्
-\frac{11}{3}y=6
समीकरणको दुबैतिरबाट 8 घटाउनुहोस्।
y=-\frac{18}{11}
समीकरणको दुबैतिर -\frac{11}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{4}{3}\left(-\frac{18}{11}\right)+1
x=-\frac{4}{3}y+1 मा y लाई -\frac{18}{11} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{24}{11}+1
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{4}{3} लाई -\frac{18}{11} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{35}{11}
\frac{24}{11} मा 1 जोड्नुहोस्
x=\frac{35}{11},y=-\frac{18}{11}
अब प्रणाली समाधान भएको छ।
3x+4y=3,8x+7y=14
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\14\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&4\\8&7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-4\times 8}&-\frac{4}{3\times 7-4\times 8}\\-\frac{8}{3\times 7-4\times 8}&\frac{3}{3\times 7-4\times 8}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}&\frac{4}{11}\\\frac{8}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}\times 3+\frac{4}{11}\times 14\\\frac{8}{11}\times 3-\frac{3}{11}\times 14\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{11}\\-\frac{18}{11}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{35}{11},y=-\frac{18}{11}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+4y=3,8x+7y=14
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
8\times 3x+8\times 4y=8\times 3,3\times 8x+3\times 7y=3\times 14
3x र 8x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 8 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
24x+32y=24,24x+21y=42
सरल गर्नुहोस्।
24x-24x+32y-21y=24-42
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 24x+32y=24 बाट 24x+21y=42 घटाउनुहोस्।
32y-21y=24-42
-24x मा 24x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 24x र -24x राशी रद्द हुन्छन्।
11y=24-42
-21y मा 32y जोड्नुहोस्
11y=-18
-42 मा 24 जोड्नुहोस्
y=-\frac{18}{11}
दुबैतिर 11 ले भाग गर्नुहोस्।
8x+7\left(-\frac{18}{11}\right)=14
8x+7y=14 मा y लाई -\frac{18}{11} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
8x-\frac{126}{11}=14
7 लाई -\frac{18}{11} पटक गुणन गर्नुहोस्।
8x=\frac{280}{11}
समीकरणको दुबैतिर \frac{126}{11} जोड्नुहोस्।
x=\frac{35}{11}
दुबैतिर 8 ले भाग गर्नुहोस्।
x=\frac{35}{11},y=-\frac{18}{11}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}