मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x+2y=8,2x+3y=9
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+2y=8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-2y+8
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
x=\frac{1}{3}\left(-2y+8\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{2}{3}y+\frac{8}{3}
\frac{1}{3} लाई -2y+8 पटक गुणन गर्नुहोस्।
2\left(-\frac{2}{3}y+\frac{8}{3}\right)+3y=9
\frac{-2y+8}{3} लाई x ले अर्को समीकरण 2x+3y=9 मा प्रतिस्थापन गर्नुहोस्।
-\frac{4}{3}y+\frac{16}{3}+3y=9
2 लाई \frac{-2y+8}{3} पटक गुणन गर्नुहोस्।
\frac{5}{3}y+\frac{16}{3}=9
3y मा -\frac{4y}{3} जोड्नुहोस्
\frac{5}{3}y=\frac{11}{3}
समीकरणको दुबैतिरबाट \frac{16}{3} घटाउनुहोस्।
y=\frac{11}{5}
समीकरणको दुबैतिर \frac{5}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{2}{3}\times \frac{11}{5}+\frac{8}{3}
x=-\frac{2}{3}y+\frac{8}{3} मा y लाई \frac{11}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{22}{15}+\frac{8}{3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{2}{3} लाई \frac{11}{5} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{6}{5}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{8}{3} लाई -\frac{22}{15} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{6}{5},y=\frac{11}{5}
अब प्रणाली समाधान भएको छ।
3x+2y=8,2x+3y=9
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&2\\2&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\times 2}&-\frac{2}{3\times 3-2\times 2}\\-\frac{2}{3\times 3-2\times 2}&\frac{3}{3\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{2}{5}\\-\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8-\frac{2}{5}\times 9\\-\frac{2}{5}\times 8+\frac{3}{5}\times 9\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{11}{5}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{6}{5},y=\frac{11}{5}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+2y=8,2x+3y=9
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\times 3x+2\times 2y=2\times 8,3\times 2x+3\times 3y=3\times 9
3x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
6x+4y=16,6x+9y=27
सरल गर्नुहोस्।
6x-6x+4y-9y=16-27
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x+4y=16 बाट 6x+9y=27 घटाउनुहोस्।
4y-9y=16-27
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
-5y=16-27
-9y मा 4y जोड्नुहोस्
-5y=-11
-27 मा 16 जोड्नुहोस्
y=\frac{11}{5}
दुबैतिर -5 ले भाग गर्नुहोस्।
2x+3\times \frac{11}{5}=9
2x+3y=9 मा y लाई \frac{11}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+\frac{33}{5}=9
3 लाई \frac{11}{5} पटक गुणन गर्नुहोस्।
2x=\frac{12}{5}
समीकरणको दुबैतिरबाट \frac{33}{5} घटाउनुहोस्।
x=\frac{6}{5}
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{6}{5},y=\frac{11}{5}
अब प्रणाली समाधान भएको छ।