मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x+10y=11,-10x-8y=14
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+10y=11
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-10y+11
समीकरणको दुबैतिरबाट 10y घटाउनुहोस्।
x=\frac{1}{3}\left(-10y+11\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{10}{3}y+\frac{11}{3}
\frac{1}{3} लाई -10y+11 पटक गुणन गर्नुहोस्।
-10\left(-\frac{10}{3}y+\frac{11}{3}\right)-8y=14
\frac{-10y+11}{3} लाई x ले अर्को समीकरण -10x-8y=14 मा प्रतिस्थापन गर्नुहोस्।
\frac{100}{3}y-\frac{110}{3}-8y=14
-10 लाई \frac{-10y+11}{3} पटक गुणन गर्नुहोस्।
\frac{76}{3}y-\frac{110}{3}=14
-8y मा \frac{100y}{3} जोड्नुहोस्
\frac{76}{3}y=\frac{152}{3}
समीकरणको दुबैतिर \frac{110}{3} जोड्नुहोस्।
y=2
समीकरणको दुबैतिर \frac{76}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{10}{3}\times 2+\frac{11}{3}
x=-\frac{10}{3}y+\frac{11}{3} मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-20+11}{3}
-\frac{10}{3} लाई 2 पटक गुणन गर्नुहोस्।
x=-3
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{11}{3} लाई -\frac{20}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-3,y=2
अब प्रणाली समाधान भएको छ।
3x+10y=11,-10x-8y=14
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\14\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&10\\-10&-8\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-10\left(-10\right)}&-\frac{10}{3\left(-8\right)-10\left(-10\right)}\\-\frac{-10}{3\left(-8\right)-10\left(-10\right)}&\frac{3}{3\left(-8\right)-10\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&-\frac{5}{38}\\\frac{5}{38}&\frac{3}{76}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 11-\frac{5}{38}\times 14\\\frac{5}{38}\times 11+\frac{3}{76}\times 14\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-3,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+10y=11,-10x-8y=14
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-10\times 3x-10\times 10y=-10\times 11,3\left(-10\right)x+3\left(-8\right)y=3\times 14
3x र -10x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -10 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
-30x-100y=-110,-30x-24y=42
सरल गर्नुहोस्।
-30x+30x-100y+24y=-110-42
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -30x-100y=-110 बाट -30x-24y=42 घटाउनुहोस्।
-100y+24y=-110-42
30x मा -30x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -30x र 30x राशी रद्द हुन्छन्।
-76y=-110-42
24y मा -100y जोड्नुहोस्
-76y=-152
-42 मा -110 जोड्नुहोस्
y=2
दुबैतिर -76 ले भाग गर्नुहोस्।
-10x-8\times 2=14
-10x-8y=14 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-10x-16=14
-8 लाई 2 पटक गुणन गर्नुहोस्।
-10x=30
समीकरणको दुबैतिर 16 जोड्नुहोस्।
x=-3
दुबैतिर -10 ले भाग गर्नुहोस्।
x=-3,y=2
अब प्रणाली समाधान भएको छ।