y, x को लागि हल गर्नुहोस्
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2y-3x=-4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
2y-x=1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2y-3x=-4,2y-x=1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2y-3x=-4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
2y=3x-4
समीकरणको दुबैतिर 3x जोड्नुहोस्।
y=\frac{1}{2}\left(3x-4\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
y=\frac{3}{2}x-2
\frac{1}{2} लाई 3x-4 पटक गुणन गर्नुहोस्।
2\left(\frac{3}{2}x-2\right)-x=1
\frac{3x}{2}-2 लाई y ले अर्को समीकरण 2y-x=1 मा प्रतिस्थापन गर्नुहोस्।
3x-4-x=1
2 लाई \frac{3x}{2}-2 पटक गुणन गर्नुहोस्।
2x-4=1
-x मा 3x जोड्नुहोस्
2x=5
समीकरणको दुबैतिर 4 जोड्नुहोस्।
x=\frac{5}{2}
दुबैतिर 2 ले भाग गर्नुहोस्।
y=\frac{3}{2}\times \frac{5}{2}-2
y=\frac{3}{2}x-2 मा x लाई \frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=\frac{15}{4}-2
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{3}{2} लाई \frac{5}{2} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
y=\frac{7}{4}
\frac{15}{4} मा -2 जोड्नुहोस्
y=\frac{7}{4},x=\frac{5}{2}
अब प्रणाली समाधान भएको छ।
2y-3x=-4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
2y-x=1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2y-3x=-4,2y-x=1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-3\\2&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-4\right)+\frac{3}{4}\\-\frac{1}{2}\left(-4\right)+\frac{1}{2}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\\\frac{5}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
y=\frac{7}{4},x=\frac{5}{2}
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
2y-3x=-4
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3x घटाउनुहोस्।
2y-x=1
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट x घटाउनुहोस्।
2y-3x=-4,2y-x=1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2y-2y-3x+x=-4-1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2y-3x=-4 बाट 2y-x=1 घटाउनुहोस्।
-3x+x=-4-1
-2y मा 2y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2y र -2y राशी रद्द हुन्छन्।
-2x=-4-1
x मा -3x जोड्नुहोस्
-2x=-5
-1 मा -4 जोड्नुहोस्
x=\frac{5}{2}
दुबैतिर -2 ले भाग गर्नुहोस्।
2y-\frac{5}{2}=1
2y-x=1 मा x लाई \frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
2y=\frac{7}{2}
समीकरणको दुबैतिर \frac{5}{2} जोड्नुहोस्।
y=\frac{7}{4}
दुबैतिर 2 ले भाग गर्नुहोस्।
y=\frac{7}{4},x=\frac{5}{2}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}