x, y को लागि हल गर्नुहोस्
x=4
y=8
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left. \begin{array} { l } { 2 x - y = 0 } \\ { x + 5 y = 44 } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-y=0,x+5y=44
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=y
समीकरणको दुबैतिर y जोड्नुहोस्।
x=\frac{1}{2}y
दुबैतिर 2 ले भाग गर्नुहोस्।
\frac{1}{2}y+5y=44
\frac{y}{2} लाई x ले अर्को समीकरण x+5y=44 मा प्रतिस्थापन गर्नुहोस्।
\frac{11}{2}y=44
5y मा \frac{y}{2} जोड्नुहोस्
y=8
समीकरणको दुबैतिर \frac{11}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{1}{2}\times 8
x=\frac{1}{2}y मा y लाई 8 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=4
\frac{1}{2} लाई 8 पटक गुणन गर्नुहोस्।
x=4,y=8
अब प्रणाली समाधान भएको छ।
2x-y=0,x+5y=44
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\44\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-1\\1&5\end{matrix}\right))\left(\begin{matrix}2&-1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&5\end{matrix}\right))\left(\begin{matrix}0\\44\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-1\\1&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&5\end{matrix}\right))\left(\begin{matrix}0\\44\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&5\end{matrix}\right))\left(\begin{matrix}0\\44\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{-1}{2\times 5-\left(-1\right)}\\-\frac{1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}0\\44\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&\frac{1}{11}\\-\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}0\\44\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 44\\\frac{2}{11}\times 44\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
x=4,y=8
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-y=0,x+5y=44
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x-y=0,2x+2\times 5y=2\times 44
2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
2x-y=0,2x+10y=88
सरल गर्नुहोस्।
2x-2x-y-10y=-88
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x-y=0 बाट 2x+10y=88 घटाउनुहोस्।
-y-10y=-88
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
-11y=-88
-10y मा -y जोड्नुहोस्
y=8
दुबैतिर -11 ले भाग गर्नुहोस्।
x+5\times 8=44
x+5y=44 मा y लाई 8 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+40=44
5 लाई 8 पटक गुणन गर्नुहोस्।
x=4
समीकरणको दुबैतिरबाट 40 घटाउनुहोस्।
x=4,y=8
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}