मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+y=5,6x+6y=24
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+y=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-y+5
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{2}\left(-y+5\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{1}{2}y+\frac{5}{2}
\frac{1}{2} लाई -y+5 पटक गुणन गर्नुहोस्।
6\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=24
\frac{-y+5}{2} लाई x ले अर्को समीकरण 6x+6y=24 मा प्रतिस्थापन गर्नुहोस्।
-3y+15+6y=24
6 लाई \frac{-y+5}{2} पटक गुणन गर्नुहोस्।
3y+15=24
6y मा -3y जोड्नुहोस्
3y=9
समीकरणको दुबैतिरबाट 15 घटाउनुहोस्।
y=3
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{1}{2}\times 3+\frac{5}{2}
x=-\frac{1}{2}y+\frac{5}{2} मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-3+5}{2}
-\frac{1}{2} लाई 3 पटक गुणन गर्नुहोस्।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{2} लाई -\frac{3}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=3
अब प्रणाली समाधान भएको छ।
2x+y=5,6x+6y=24
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&1\\6&6\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-6}&-\frac{1}{2\times 6-6}\\-\frac{6}{2\times 6-6}&\frac{2}{2\times 6-6}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{6}\\-1&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-\frac{1}{6}\times 24\\-5+\frac{1}{3}\times 24\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+y=5,6x+6y=24
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
6\times 2x+6y=6\times 5,2\times 6x+2\times 6y=2\times 24
2x र 6x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 6 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
12x+6y=30,12x+12y=48
सरल गर्नुहोस्।
12x-12x+6y-12y=30-48
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 12x+6y=30 बाट 12x+12y=48 घटाउनुहोस्।
6y-12y=30-48
-12x मा 12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 12x र -12x राशी रद्द हुन्छन्।
-6y=30-48
-12y मा 6y जोड्नुहोस्
-6y=-18
-48 मा 30 जोड्नुहोस्
y=3
दुबैतिर -6 ले भाग गर्नुहोस्।
6x+6\times 3=24
6x+6y=24 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
6x+18=24
6 लाई 3 पटक गुणन गर्नुहोस्।
6x=6
समीकरणको दुबैतिरबाट 18 घटाउनुहोस्।
x=1
दुबैतिर 6 ले भाग गर्नुहोस्।
x=1,y=3
अब प्रणाली समाधान भएको छ।