मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x+y=10,3x-y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+y=10
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-y+10
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{2}\left(-y+10\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{1}{2}y+5
\frac{1}{2} लाई -y+10 पटक गुणन गर्नुहोस्।
3\left(-\frac{1}{2}y+5\right)-y=0
-\frac{y}{2}+5 लाई x ले अर्को समीकरण 3x-y=0 मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{2}y+15-y=0
3 लाई -\frac{y}{2}+5 पटक गुणन गर्नुहोस्।
-\frac{5}{2}y+15=0
-y मा -\frac{3y}{2} जोड्नुहोस्
-\frac{5}{2}y=-15
समीकरणको दुबैतिरबाट 15 घटाउनुहोस्।
y=6
समीकरणको दुबैतिर -\frac{5}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{2}\times 6+5
x=-\frac{1}{2}y+5 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-3+5
-\frac{1}{2} लाई 6 पटक गुणन गर्नुहोस्।
x=2
-3 मा 5 जोड्नुहोस्
x=2,y=6
अब प्रणाली समाधान भएको छ।
3x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x+y=10,3x-y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&1\\3&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{1}{2\left(-1\right)-3}\\-\frac{3}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10\\\frac{3}{5}\times 10\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट y घटाउनुहोस्।
2x+y=10,3x-y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 2x+3y=3\times 10,2\times 3x+2\left(-1\right)y=0
2x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
6x+3y=30,6x-2y=0
सरल गर्नुहोस्।
6x-6x+3y+2y=30
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x+3y=30 बाट 6x-2y=0 घटाउनुहोस्।
3y+2y=30
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
5y=30
2y मा 3y जोड्नुहोस्
y=6
दुबैतिर 5 ले भाग गर्नुहोस्।
3x-6=0
3x-y=0 मा y लाई 6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x=6
समीकरणको दुबैतिर 6 जोड्नुहोस्।
x=2
दुबैतिर 3 ले भाग गर्नुहोस्।
x=2,y=6
अब प्रणाली समाधान भएको छ।