मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+3y=8,x-y=10
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+3y=8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-3y+8
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{2}\left(-3y+8\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y+4
\frac{1}{2} लाई -3y+8 पटक गुणन गर्नुहोस्।
-\frac{3}{2}y+4-y=10
-\frac{3y}{2}+4 लाई x ले अर्को समीकरण x-y=10 मा प्रतिस्थापन गर्नुहोस्।
-\frac{5}{2}y+4=10
-y मा -\frac{3y}{2} जोड्नुहोस्
-\frac{5}{2}y=6
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
y=-\frac{12}{5}
समीकरणको दुबैतिर -\frac{5}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{2}\left(-\frac{12}{5}\right)+4
x=-\frac{3}{2}y+4 मा y लाई -\frac{12}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{18}{5}+4
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{3}{2} लाई -\frac{12}{5} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{38}{5}
\frac{18}{5} मा 4 जोड्नुहोस्
x=\frac{38}{5},y=-\frac{12}{5}
अब प्रणाली समाधान भएको छ।
2x+3y=8,x-y=10
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\10\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&3\\1&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{3}{2\left(-1\right)-3}\\-\frac{1}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8+\frac{3}{5}\times 10\\\frac{1}{5}\times 8-\frac{2}{5}\times 10\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{38}{5}\\-\frac{12}{5}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{38}{5},y=-\frac{12}{5}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+3y=8,x-y=10
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x+3y=8,2x+2\left(-1\right)y=2\times 10
2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
2x+3y=8,2x-2y=20
सरल गर्नुहोस्।
2x-2x+3y+2y=8-20
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+3y=8 बाट 2x-2y=20 घटाउनुहोस्।
3y+2y=8-20
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
5y=8-20
2y मा 3y जोड्नुहोस्
5y=-12
-20 मा 8 जोड्नुहोस्
y=-\frac{12}{5}
दुबैतिर 5 ले भाग गर्नुहोस्।
x-\left(-\frac{12}{5}\right)=10
x-y=10 मा y लाई -\frac{12}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{38}{5}
समीकरणको दुबैतिरबाट \frac{12}{5} घटाउनुहोस्।
x=\frac{38}{5},y=-\frac{12}{5}
अब प्रणाली समाधान भएको छ।