x, y को लागि हल गर्नुहोस्
x=-\frac{3}{8}=-0.375
y = \frac{9}{4} = 2\frac{1}{4} = 2.25
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left. \begin{array} { l } { 2 x + 3 y = 6 } \\ { 6 x + 5 y = 9 } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x+3y=6,6x+5y=9
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+3y=6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-3y+6
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{2}\left(-3y+6\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y+3
\frac{1}{2} लाई -3y+6 पटक गुणन गर्नुहोस्।
6\left(-\frac{3}{2}y+3\right)+5y=9
-\frac{3y}{2}+3 लाई x ले अर्को समीकरण 6x+5y=9 मा प्रतिस्थापन गर्नुहोस्।
-9y+18+5y=9
6 लाई -\frac{3y}{2}+3 पटक गुणन गर्नुहोस्।
-4y+18=9
5y मा -9y जोड्नुहोस्
-4y=-9
समीकरणको दुबैतिरबाट 18 घटाउनुहोस्।
y=\frac{9}{4}
दुबैतिर -4 ले भाग गर्नुहोस्।
x=-\frac{3}{2}\times \frac{9}{4}+3
x=-\frac{3}{2}y+3 मा y लाई \frac{9}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{27}{8}+3
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{3}{2} लाई \frac{9}{4} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-\frac{3}{8}
-\frac{27}{8} मा 3 जोड्नुहोस्
x=-\frac{3}{8},y=\frac{9}{4}
अब प्रणाली समाधान भएको छ।
2x+3y=6,6x+5y=9
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}2&3\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&3\\6&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&5\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 6}&-\frac{3}{2\times 5-3\times 6}\\-\frac{6}{2\times 5-3\times 6}&\frac{2}{2\times 5-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\times 6+\frac{3}{8}\times 9\\\frac{3}{4}\times 6-\frac{1}{4}\times 9\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\\\frac{9}{4}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{3}{8},y=\frac{9}{4}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+3y=6,6x+5y=9
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\times 5y=2\times 9
2x र 6x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 6 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
12x+18y=36,12x+10y=18
सरल गर्नुहोस्।
12x-12x+18y-10y=36-18
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 12x+18y=36 बाट 12x+10y=18 घटाउनुहोस्।
18y-10y=36-18
-12x मा 12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 12x र -12x राशी रद्द हुन्छन्।
8y=36-18
-10y मा 18y जोड्नुहोस्
8y=18
-18 मा 36 जोड्नुहोस्
y=\frac{9}{4}
दुबैतिर 8 ले भाग गर्नुहोस्।
6x+5\times \frac{9}{4}=9
6x+5y=9 मा y लाई \frac{9}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
6x+\frac{45}{4}=9
5 लाई \frac{9}{4} पटक गुणन गर्नुहोस्।
6x=-\frac{9}{4}
समीकरणको दुबैतिरबाट \frac{45}{4} घटाउनुहोस्।
x=-\frac{3}{8}
दुबैतिर 6 ले भाग गर्नुहोस्।
x=-\frac{3}{8},y=\frac{9}{4}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}