x, y को लागि हल गर्नुहोस्
x = \frac{621}{38} = 16\frac{13}{38} \approx 16.342105263
y = \frac{154}{19} = 8\frac{2}{19} \approx 8.105263158
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x+3y=57,3x-5y=\frac{17}{2}
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+3y=57
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-3y+57
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{2}\left(-3y+57\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y+\frac{57}{2}
\frac{1}{2} लाई -3y+57 पटक गुणन गर्नुहोस्।
3\left(-\frac{3}{2}y+\frac{57}{2}\right)-5y=\frac{17}{2}
\frac{-3y+57}{2} लाई x ले अर्को समीकरण 3x-5y=\frac{17}{2} मा प्रतिस्थापन गर्नुहोस्।
-\frac{9}{2}y+\frac{171}{2}-5y=\frac{17}{2}
3 लाई \frac{-3y+57}{2} पटक गुणन गर्नुहोस्।
-\frac{19}{2}y+\frac{171}{2}=\frac{17}{2}
-5y मा -\frac{9y}{2} जोड्नुहोस्
-\frac{19}{2}y=-77
समीकरणको दुबैतिरबाट \frac{171}{2} घटाउनुहोस्।
y=\frac{154}{19}
समीकरणको दुबैतिर -\frac{19}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{3}{2}\times \frac{154}{19}+\frac{57}{2}
x=-\frac{3}{2}y+\frac{57}{2} मा y लाई \frac{154}{19} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{231}{19}+\frac{57}{2}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{3}{2} लाई \frac{154}{19} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{621}{38}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{57}{2} लाई -\frac{231}{19} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{621}{38},y=\frac{154}{19}
अब प्रणाली समाधान भएको छ।
2x+3y=57,3x-5y=\frac{17}{2}
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&3\\3&-5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 3}&-\frac{3}{2\left(-5\right)-3\times 3}\\-\frac{3}{2\left(-5\right)-3\times 3}&\frac{2}{2\left(-5\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 57+\frac{3}{19}\times \frac{17}{2}\\\frac{3}{19}\times 57-\frac{2}{19}\times \frac{17}{2}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{621}{38}\\\frac{154}{19}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{621}{38},y=\frac{154}{19}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+3y=57,3x-5y=\frac{17}{2}
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 2x+3\times 3y=3\times 57,2\times 3x+2\left(-5\right)y=2\times \frac{17}{2}
2x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
6x+9y=171,6x-10y=17
सरल गर्नुहोस्।
6x-6x+9y+10y=171-17
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 6x+9y=171 बाट 6x-10y=17 घटाउनुहोस्।
9y+10y=171-17
-6x मा 6x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 6x र -6x राशी रद्द हुन्छन्।
19y=171-17
10y मा 9y जोड्नुहोस्
19y=154
-17 मा 171 जोड्नुहोस्
y=\frac{154}{19}
दुबैतिर 19 ले भाग गर्नुहोस्।
3x-5\times \frac{154}{19}=\frac{17}{2}
3x-5y=\frac{17}{2} मा y लाई \frac{154}{19} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x-\frac{770}{19}=\frac{17}{2}
-5 लाई \frac{154}{19} पटक गुणन गर्नुहोस्।
3x=\frac{1863}{38}
समीकरणको दुबैतिर \frac{770}{19} जोड्नुहोस्।
x=\frac{621}{38}
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{621}{38},y=\frac{154}{19}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}