मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

2x+3y=19,4x+11y=53
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+3y=19
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-3y+19
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{2}\left(-3y+19\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{3}{2}y+\frac{19}{2}
\frac{1}{2} लाई -3y+19 पटक गुणन गर्नुहोस्।
4\left(-\frac{3}{2}y+\frac{19}{2}\right)+11y=53
\frac{-3y+19}{2} लाई x ले अर्को समीकरण 4x+11y=53 मा प्रतिस्थापन गर्नुहोस्।
-6y+38+11y=53
4 लाई \frac{-3y+19}{2} पटक गुणन गर्नुहोस्।
5y+38=53
11y मा -6y जोड्नुहोस्
5y=15
समीकरणको दुबैतिरबाट 38 घटाउनुहोस्।
y=3
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{3}{2}\times 3+\frac{19}{2}
x=-\frac{3}{2}y+\frac{19}{2} मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-9+19}{2}
-\frac{3}{2} लाई 3 पटक गुणन गर्नुहोस्।
x=5
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{19}{2} लाई -\frac{9}{2} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=5,y=3
अब प्रणाली समाधान भएको छ।
2x+3y=19,4x+11y=53
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&3\\4&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\53\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}2&3\\4&11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&3\\4&11\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&11\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{2\times 11-3\times 4}&-\frac{3}{2\times 11-3\times 4}\\-\frac{4}{2\times 11-3\times 4}&\frac{2}{2\times 11-3\times 4}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{10}&-\frac{3}{10}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{10}\times 19-\frac{3}{10}\times 53\\-\frac{2}{5}\times 19+\frac{1}{5}\times 53\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
हिसाब गर्नुहोस्।
x=5,y=3
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+3y=19,4x+11y=53
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
4\times 2x+4\times 3y=4\times 19,2\times 4x+2\times 11y=2\times 53
2x र 4x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
8x+12y=76,8x+22y=106
सरल गर्नुहोस्।
8x-8x+12y-22y=76-106
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 8x+12y=76 बाट 8x+22y=106 घटाउनुहोस्।
12y-22y=76-106
-8x मा 8x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 8x र -8x राशी रद्द हुन्छन्।
-10y=76-106
-22y मा 12y जोड्नुहोस्
-10y=-30
-106 मा 76 जोड्नुहोस्
y=3
दुबैतिर -10 ले भाग गर्नुहोस्।
4x+11\times 3=53
4x+11y=53 मा y लाई 3 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
4x+33=53
11 लाई 3 पटक गुणन गर्नुहोस्।
4x=20
समीकरणको दुबैतिरबाट 33 घटाउनुहोस्।
x=5
दुबैतिर 4 ले भाग गर्नुहोस्।
x=5,y=3
अब प्रणाली समाधान भएको छ।