मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-6x+y=-2,-3x-6y=12
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-6x+y=-2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-6x=-y-2
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=-\frac{1}{6}\left(-y-2\right)
दुबैतिर -6 ले भाग गर्नुहोस्।
x=\frac{1}{6}y+\frac{1}{3}
-\frac{1}{6} लाई -y-2 पटक गुणन गर्नुहोस्।
-3\left(\frac{1}{6}y+\frac{1}{3}\right)-6y=12
\frac{y}{6}+\frac{1}{3} लाई x ले अर्को समीकरण -3x-6y=12 मा प्रतिस्थापन गर्नुहोस्।
-\frac{1}{2}y-1-6y=12
-3 लाई \frac{y}{6}+\frac{1}{3} पटक गुणन गर्नुहोस्।
-\frac{13}{2}y-1=12
-6y मा -\frac{y}{2} जोड्नुहोस्
-\frac{13}{2}y=13
समीकरणको दुबैतिर 1 जोड्नुहोस्।
y=-2
समीकरणको दुबैतिर -\frac{13}{2} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{1}{6}\left(-2\right)+\frac{1}{3}
x=\frac{1}{6}y+\frac{1}{3} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-1+1}{3}
\frac{1}{6} लाई -2 पटक गुणन गर्नुहोस्।
x=0
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{3} लाई -\frac{1}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=0,y=-2
अब प्रणाली समाधान भएको छ।
-6x+y=-2,-3x-6y=12
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\12\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6\left(-6\right)-\left(-3\right)}&-\frac{1}{-6\left(-6\right)-\left(-3\right)}\\-\frac{-3}{-6\left(-6\right)-\left(-3\right)}&-\frac{6}{-6\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{39}\\\frac{1}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-2\right)-\frac{1}{39}\times 12\\\frac{1}{13}\left(-2\right)-\frac{2}{13}\times 12\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=0,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-6x+y=-2,-3x-6y=12
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-3\left(-6\right)x-3y=-3\left(-2\right),-6\left(-3\right)x-6\left(-6\right)y=-6\times 12
-6x र -3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -6 ले गुणन गर्नुहोस्।
18x-3y=6,18x+36y=-72
सरल गर्नुहोस्।
18x-18x-3y-36y=6+72
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 18x-3y=6 बाट 18x+36y=-72 घटाउनुहोस्।
-3y-36y=6+72
-18x मा 18x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 18x र -18x राशी रद्द हुन्छन्।
-39y=6+72
-36y मा -3y जोड्नुहोस्
-39y=78
72 मा 6 जोड्नुहोस्
y=-2
दुबैतिर -39 ले भाग गर्नुहोस्।
-3x-6\left(-2\right)=12
-3x-6y=12 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-3x+12=12
-6 लाई -2 पटक गुणन गर्नुहोस्।
-3x=0
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
x=0
दुबैतिर -3 ले भाग गर्नुहोस्।
x=0,y=-2
अब प्रणाली समाधान भएको छ।