मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-5x+10y=15,-5x+2y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-5x+10y=15
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-5x=-10y+15
समीकरणको दुबैतिरबाट 10y घटाउनुहोस्।
x=-\frac{1}{5}\left(-10y+15\right)
दुबैतिर -5 ले भाग गर्नुहोस्।
x=2y-3
-\frac{1}{5} लाई -10y+15 पटक गुणन गर्नुहोस्।
-5\left(2y-3\right)+2y=-1
2y-3 लाई x ले अर्को समीकरण -5x+2y=-1 मा प्रतिस्थापन गर्नुहोस्।
-10y+15+2y=-1
-5 लाई 2y-3 पटक गुणन गर्नुहोस्।
-8y+15=-1
2y मा -10y जोड्नुहोस्
-8y=-16
समीकरणको दुबैतिरबाट 15 घटाउनुहोस्।
y=2
दुबैतिर -8 ले भाग गर्नुहोस्।
x=2\times 2-3
x=2y-3 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=4-3
2 लाई 2 पटक गुणन गर्नुहोस्।
x=1
4 मा -3 जोड्नुहोस्
x=1,y=2
अब प्रणाली समाधान भएको छ।
-5x+10y=15,-5x+2y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-5&10\\-5&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-5x+10y=15,-5x+2y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-5x+5x+10y-2y=15+1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -5x+10y=15 बाट -5x+2y=-1 घटाउनुहोस्।
10y-2y=15+1
5x मा -5x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -5x र 5x राशी रद्द हुन्छन्।
8y=15+1
-2y मा 10y जोड्नुहोस्
8y=16
1 मा 15 जोड्नुहोस्
y=2
दुबैतिर 8 ले भाग गर्नुहोस्।
-5x+2\times 2=-1
-5x+2y=-1 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-5x+4=-1
2 लाई 2 पटक गुणन गर्नुहोस्।
-5x=-5
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
x=1
दुबैतिर -5 ले भाग गर्नुहोस्।
x=1,y=2
अब प्रणाली समाधान भएको छ।