मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-4x+9y=9,x-3y=-6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-4x+9y=9
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-4x=-9y+9
समीकरणको दुबैतिरबाट 9y घटाउनुहोस्।
x=-\frac{1}{4}\left(-9y+9\right)
दुबैतिर -4 ले भाग गर्नुहोस्।
x=\frac{9}{4}y-\frac{9}{4}
-\frac{1}{4} लाई -9y+9 पटक गुणन गर्नुहोस्।
\frac{9}{4}y-\frac{9}{4}-3y=-6
\frac{-9+9y}{4} लाई x ले अर्को समीकरण x-3y=-6 मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{4}y-\frac{9}{4}=-6
-3y मा \frac{9y}{4} जोड्नुहोस्
-\frac{3}{4}y=-\frac{15}{4}
समीकरणको दुबैतिर \frac{9}{4} जोड्नुहोस्।
y=5
समीकरणको दुबैतिर -\frac{3}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{9}{4}\times 5-\frac{9}{4}
x=\frac{9}{4}y-\frac{9}{4} मा y लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{45-9}{4}
\frac{9}{4} लाई 5 पटक गुणन गर्नुहोस्।
x=9
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{9}{4} लाई \frac{45}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=9,y=5
अब प्रणाली समाधान भएको छ।
-4x+9y=9,x-3y=-6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-4&9\\1&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&9\\1&-3\end{matrix}\right))\left(\begin{matrix}9\\-6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-9}&-\frac{9}{-4\left(-3\right)-9}\\-\frac{1}{-4\left(-3\right)-9}&-\frac{4}{-4\left(-3\right)-9}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{3}&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}9\\-6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-3\left(-6\right)\\-\frac{1}{3}\times 9-\frac{4}{3}\left(-6\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
x=9,y=5
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-4x+9y=9,x-3y=-6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-4x+9y=9,-4x-4\left(-3\right)y=-4\left(-6\right)
-4x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -4 ले गुणन गर्नुहोस्।
-4x+9y=9,-4x+12y=24
सरल गर्नुहोस्।
-4x+4x+9y-12y=9-24
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -4x+9y=9 बाट -4x+12y=24 घटाउनुहोस्।
9y-12y=9-24
4x मा -4x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -4x र 4x राशी रद्द हुन्छन्।
-3y=9-24
-12y मा 9y जोड्नुहोस्
-3y=-15
-24 मा 9 जोड्नुहोस्
y=5
दुबैतिर -3 ले भाग गर्नुहोस्।
x-3\times 5=-6
x-3y=-6 मा y लाई 5 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x-15=-6
-3 लाई 5 पटक गुणन गर्नुहोस्।
x=9
समीकरणको दुबैतिर 15 जोड्नुहोस्।
x=9,y=5
अब प्रणाली समाधान भएको छ।