मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-3x+4y=-6,5x-y=10
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-3x+4y=-6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-3x=-4y-6
समीकरणको दुबैतिरबाट 4y घटाउनुहोस्।
x=-\frac{1}{3}\left(-4y-6\right)
दुबैतिर -3 ले भाग गर्नुहोस्।
x=\frac{4}{3}y+2
-\frac{1}{3} लाई -4y-6 पटक गुणन गर्नुहोस्।
5\left(\frac{4}{3}y+2\right)-y=10
\frac{4y}{3}+2 लाई x ले अर्को समीकरण 5x-y=10 मा प्रतिस्थापन गर्नुहोस्।
\frac{20}{3}y+10-y=10
5 लाई \frac{4y}{3}+2 पटक गुणन गर्नुहोस्।
\frac{17}{3}y+10=10
-y मा \frac{20y}{3} जोड्नुहोस्
\frac{17}{3}y=0
समीकरणको दुबैतिरबाट 10 घटाउनुहोस्।
y=0
समीकरणको दुबैतिर \frac{17}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=2
x=\frac{4}{3}y+2 मा y लाई 0 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2,y=0
अब प्रणाली समाधान भएको छ।
-3x+4y=-6,5x-y=10
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-3&4\\5&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-4\times 5}&-\frac{4}{-3\left(-1\right)-4\times 5}\\-\frac{5}{-3\left(-1\right)-4\times 5}&-\frac{3}{-3\left(-1\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{4}{17}\\\frac{5}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\left(-6\right)+\frac{4}{17}\times 10\\\frac{5}{17}\left(-6\right)+\frac{3}{17}\times 10\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=0
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-3x+4y=-6,5x-y=10
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5\left(-3\right)x+5\times 4y=5\left(-6\right),-3\times 5x-3\left(-1\right)y=-3\times 10
-3x र 5x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस्।
-15x+20y=-30,-15x+3y=-30
सरल गर्नुहोस्।
-15x+15x+20y-3y=-30+30
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -15x+20y=-30 बाट -15x+3y=-30 घटाउनुहोस्।
20y-3y=-30+30
15x मा -15x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -15x र 15x राशी रद्द हुन्छन्।
17y=-30+30
-3y मा 20y जोड्नुहोस्
17y=0
30 मा -30 जोड्नुहोस्
y=0
दुबैतिर 17 ले भाग गर्नुहोस्।
5x=10
5x-y=10 मा y लाई 0 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2
दुबैतिर 5 ले भाग गर्नुहोस्।
x=2,y=0
अब प्रणाली समाधान भएको छ।