x, y, z को लागि हल गर्नुहोस्
x=\left(-1\right)ArcTanI(a)+\left(-1\right)\pi n_{122}+6
n_{122}\in \mathrm{Z}
\nexists n_{1}\in \mathrm{Z}\text{ : }ArcTanI(a)+\pi n_{122}=\frac{1}{2}\pi +\pi n_{1}\text{ and }\exists n_{102}\in \mathrm{Z}\text{ : }\left(n_{102}<\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }n_{102}>\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{3}{2}\right)\pi \right)\pi ^{-1}\right)
y=ArcTanI(a)+\pi n_{122}
n_{122}\in \mathrm{Z}
\exists n_{102}\in \mathrm{Z}\text{ : }\left(n_{102}<\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }n_{102}>\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{3}{2}\right)\pi \right)\pi ^{-1}\right)
z=SinI(ArcTanI(a)+\pi n_{122})\left(CosI(ArcTanI(a)+\pi n_{122})\right)^{-1}
n_{122}\in \mathrm{Z}
\nexists n_{1}\in \mathrm{Z}\text{ : }ArcTanI(a)+\pi n_{122}=\frac{1}{2}\pi +\pi n_{1}\text{ and }\exists n_{102}\in \mathrm{Z}\text{ : }\left(n_{102}<\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }n_{102}>\left(ArcTanI(a)+\pi n_{122}+\left(-\frac{3}{2}\right)\pi \right)\pi ^{-1}\right)
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}