x, y को लागि हल गर्नुहोस्
x=\frac{5}{6}\approx 0.833333333
y=\frac{2}{3}\approx 0.666666667
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x+5y=5,8x-y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+5y=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-5y+5
समीकरणको दुबैतिरबाट 5y घटाउनुहोस्।
x=\frac{1}{2}\left(-5y+5\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{5}{2}y+\frac{5}{2}
\frac{1}{2} लाई -5y+5 पटक गुणन गर्नुहोस्।
8\left(-\frac{5}{2}y+\frac{5}{2}\right)-y=6
\frac{-5y+5}{2} लाई x ले अर्को समीकरण 8x-y=6 मा प्रतिस्थापन गर्नुहोस्।
-20y+20-y=6
8 लाई \frac{-5y+5}{2} पटक गुणन गर्नुहोस्।
-21y+20=6
-y मा -20y जोड्नुहोस्
-21y=-14
समीकरणको दुबैतिरबाट 20 घटाउनुहोस्।
y=\frac{2}{3}
दुबैतिर -21 ले भाग गर्नुहोस्।
x=-\frac{5}{2}\times \frac{2}{3}+\frac{5}{2}
x=-\frac{5}{2}y+\frac{5}{2} मा y लाई \frac{2}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{5}{3}+\frac{5}{2}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{5}{2} लाई \frac{2}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{5}{6}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{2} लाई -\frac{5}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{5}{6},y=\frac{2}{3}
अब प्रणाली समाधान भएको छ।
2x+5y=5,8x-y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&5\\8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&5\\8&-1\end{matrix}\right))\left(\begin{matrix}2&5\\8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\8&-1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&5\\8&-1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\8&-1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\8&-1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-5\times 8}&-\frac{5}{2\left(-1\right)-5\times 8}\\-\frac{8}{2\left(-1\right)-5\times 8}&\frac{2}{2\left(-1\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}&\frac{5}{42}\\\frac{4}{21}&-\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{42}\times 5+\frac{5}{42}\times 6\\\frac{4}{21}\times 5-\frac{1}{21}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{2}{3}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{5}{6},y=\frac{2}{3}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x+5y=5,8x-y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
8\times 2x+8\times 5y=8\times 5,2\times 8x+2\left(-1\right)y=2\times 6
2x र 8x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 8 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
16x+40y=40,16x-2y=12
सरल गर्नुहोस्।
16x-16x+40y+2y=40-12
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 16x+40y=40 बाट 16x-2y=12 घटाउनुहोस्।
40y+2y=40-12
-16x मा 16x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 16x र -16x राशी रद्द हुन्छन्।
42y=40-12
2y मा 40y जोड्नुहोस्
42y=28
-12 मा 40 जोड्नुहोस्
y=\frac{2}{3}
दुबैतिर 42 ले भाग गर्नुहोस्।
8x-\frac{2}{3}=6
8x-y=6 मा y लाई \frac{2}{3} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
8x=\frac{20}{3}
समीकरणको दुबैतिर \frac{2}{3} जोड्नुहोस्।
x=\frac{5}{6}
दुबैतिर 8 ले भाग गर्नुहोस्।
x=\frac{5}{6},y=\frac{2}{3}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}