मूल्याङ्कन गर्नुहोस्
\left(x-1\right)\left(x+\left(-1-4i\right)\right)\left(x+\left(-1+4i\right)\right)
विस्तार गर्नुहोस्
x^{3}-3x^{2}+19x-17
प्रश्नोत्तरी
Complex Number
5 समस्याहरू यस प्रकार छन्:
\left( x-1 \right) \left( x-1+4i \right) \left( x-1-4i \right)
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\left(x^{2}-x+4ix-x+1-4i\right)\left(x-1-4i\right)
x-1 का प्रत्येक पदलाई x-1+4i का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
\left(x^{2}+\left(-1+4i\right)x-x+1-4i\right)\left(x-1-4i\right)
\left(-1+4i\right)x प्राप्त गर्नको लागि -x र 4ix लाई संयोजन गर्नुहोस्।
\left(x^{2}+\left(-2+4i\right)x+1-4i\right)\left(x-1-4i\right)
\left(-2+4i\right)x प्राप्त गर्नको लागि \left(-1+4i\right)x र -x लाई संयोजन गर्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-1-4i-4ix+4i-16
x^{2}+\left(-2+4i\right)x+1-4i का प्रत्येक पदलाई x-1-4i का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-1-16+\left(-4+4\right)i
वास्तविक तथा काल्पनिक अंशहरू जोड्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
जोड्नुहोस्।
x^{3}+\left(-1-4i\right)x^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
\left(-1-4i\right)x^{2} प्राप्त गर्नको लागि -x^{2} र -4ix^{2} लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
-3x^{2} प्राप्त गर्नको लागि \left(-1-4i\right)x^{2} र \left(-2+4i\right)x^{2} लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(18+4i\right)x+x-4ix-17
\left(18+4i\right)x प्राप्त गर्नको लागि \left(2-4i\right)x र \left(16+8i\right)x लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(19+4i\right)x-4ix-17
\left(19+4i\right)x प्राप्त गर्नको लागि \left(18+4i\right)x र x लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+19x-17
19x प्राप्त गर्नको लागि \left(19+4i\right)x र -4ix लाई संयोजन गर्नुहोस्।
\left(x^{2}-x+4ix-x+1-4i\right)\left(x-1-4i\right)
x-1 का प्रत्येक पदलाई x-1+4i का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
\left(x^{2}+\left(-1+4i\right)x-x+1-4i\right)\left(x-1-4i\right)
\left(-1+4i\right)x प्राप्त गर्नको लागि -x र 4ix लाई संयोजन गर्नुहोस्।
\left(x^{2}+\left(-2+4i\right)x+1-4i\right)\left(x-1-4i\right)
\left(-2+4i\right)x प्राप्त गर्नको लागि \left(-1+4i\right)x र -x लाई संयोजन गर्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-1-4i-4ix+4i-16
x^{2}+\left(-2+4i\right)x+1-4i का प्रत्येक पदलाई x-1-4i का प्रत्येक पदले गुणन गरी वितरक गुण लागू गर्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-1-16+\left(-4+4\right)i
वास्तविक तथा काल्पनिक अंशहरू जोड्नुहोस्।
x^{3}-x^{2}-4ix^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
जोड्नुहोस्।
x^{3}+\left(-1-4i\right)x^{2}+\left(-2+4i\right)x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
\left(-1-4i\right)x^{2} प्राप्त गर्नको लागि -x^{2} र -4ix^{2} लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(2-4i\right)x+\left(16+8i\right)x+x-4ix-17
-3x^{2} प्राप्त गर्नको लागि \left(-1-4i\right)x^{2} र \left(-2+4i\right)x^{2} लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(18+4i\right)x+x-4ix-17
\left(18+4i\right)x प्राप्त गर्नको लागि \left(2-4i\right)x र \left(16+8i\right)x लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+\left(19+4i\right)x-4ix-17
\left(19+4i\right)x प्राप्त गर्नको लागि \left(18+4i\right)x र x लाई संयोजन गर्नुहोस्।
x^{3}-3x^{2}+19x-17
19x प्राप्त गर्नको लागि \left(19+4i\right)x र -4ix लाई संयोजन गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}