\left\{ \begin{array} { l } { y - 2 x = 4 } \\ { 7 x - y = 1 } \end{array} \right.
y, x को लागि हल गर्नुहोस्
x=1
y=6
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y-2x=4,-y+7x=1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y-2x=4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=2x+4
समीकरणको दुबैतिर 2x जोड्नुहोस्।
-\left(2x+4\right)+7x=1
4+2x लाई y ले अर्को समीकरण -y+7x=1 मा प्रतिस्थापन गर्नुहोस्।
-2x-4+7x=1
-1 लाई 4+2x पटक गुणन गर्नुहोस्।
5x-4=1
7x मा -2x जोड्नुहोस्
5x=5
समीकरणको दुबैतिर 4 जोड्नुहोस्।
x=1
दुबैतिर 5 ले भाग गर्नुहोस्।
y=2+4
y=2x+4 मा x लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=6
2 मा 4 जोड्नुहोस्
y=6,x=1
अब प्रणाली समाधान भएको छ।
y-2x=4,-y+7x=1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-2\\-1&7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-2\left(-1\right)\right)}&-\frac{-2}{7-\left(-2\left(-1\right)\right)}\\-\frac{-1}{7-\left(-2\left(-1\right)\right)}&\frac{1}{7-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\times 4+\frac{2}{5}\\\frac{1}{5}\times 4+\frac{1}{5}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
y=6,x=1
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y-2x=4,-y+7x=1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-y-\left(-2x\right)=-4,-y+7x=1
y र -y लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
-y+2x=-4,-y+7x=1
सरल गर्नुहोस्।
-y+y+2x-7x=-4-1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -y+2x=-4 बाट -y+7x=1 घटाउनुहोस्।
2x-7x=-4-1
y मा -y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -y र y राशी रद्द हुन्छन्।
-5x=-4-1
-7x मा 2x जोड्नुहोस्
-5x=-5
-1 मा -4 जोड्नुहोस्
x=1
दुबैतिर -5 ले भाग गर्नुहोस्।
-y+7=1
-y+7x=1 मा x लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
-y=-6
समीकरणको दुबैतिरबाट 7 घटाउनुहोस्।
y=6
दुबैतिर -1 ले भाग गर्नुहोस्।
y=6,x=1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}