मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y-2x=-5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y+4x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-2x=-5,y+4x=7
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y-2x=-5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=2x-5
समीकरणको दुबैतिर 2x जोड्नुहोस्।
2x-5+4x=7
2x-5 लाई y ले अर्को समीकरण y+4x=7 मा प्रतिस्थापन गर्नुहोस्।
6x-5=7
4x मा 2x जोड्नुहोस्
6x=12
समीकरणको दुबैतिर 5 जोड्नुहोस्।
x=2
दुबैतिर 6 ले भाग गर्नुहोस्।
y=2\times 2-5
y=2x-5 मा x लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=4-5
2 लाई 2 पटक गुणन गर्नुहोस्।
y=-1
4 मा -5 जोड्नुहोस्
y=-1,x=2
अब प्रणाली समाधान भएको छ।
y-2x=-5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y+4x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-2x=-5,y+4x=7
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\7\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}1&-2\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-2\\1&4\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-5\\7\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-2}{4-\left(-2\right)}\\-\frac{1}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-5\\7\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-5\right)+\frac{1}{3}\times 7\\-\frac{1}{6}\left(-5\right)+\frac{1}{6}\times 7\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
y=-1,x=2
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y-2x=-5
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
y+4x=7
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 4x थप्नुहोस्।
y-2x=-5,y+4x=7
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
y-y-2x-4x=-5-7
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर y-2x=-5 बाट y+4x=7 घटाउनुहोस्।
-2x-4x=-5-7
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
-6x=-5-7
-4x मा -2x जोड्नुहोस्
-6x=-12
-7 मा -5 जोड्नुहोस्
x=2
दुबैतिर -6 ले भाग गर्नुहोस्।
y+4\times 2=7
y+4x=7 मा x लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y+8=7
4 लाई 2 पटक गुणन गर्नुहोस्।
y=-1
समीकरणको दुबैतिरबाट 8 घटाउनुहोस्।
y=-1,x=2
अब प्रणाली समाधान भएको छ।