मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x-y=3,3x+y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x-y=3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=y+3
समीकरणको दुबैतिर y जोड्नुहोस्।
3\left(y+3\right)+y=8
y+3 लाई x ले अर्को समीकरण 3x+y=8 मा प्रतिस्थापन गर्नुहोस्।
3y+9+y=8
3 लाई y+3 पटक गुणन गर्नुहोस्।
4y+9=8
y मा 3y जोड्नुहोस्
4y=-1
समीकरणको दुबैतिरबाट 9 घटाउनुहोस्।
y=-\frac{1}{4}
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{1}{4}+3
x=y+3 मा y लाई -\frac{1}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{11}{4}
-\frac{1}{4} मा 3 जोड्नुहोस्
x=\frac{11}{4},y=-\frac{1}{4}
अब प्रणाली समाधान भएको छ।
x-y=3,3x+y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-1\\3&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3+\frac{1}{4}\times 8\\-\frac{3}{4}\times 3+\frac{1}{4}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{1}{4}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{11}{4},y=-\frac{1}{4}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-y=3,3x+y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+3\left(-1\right)y=3\times 3,3x+y=8
x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
3x-3y=9,3x+y=8
सरल गर्नुहोस्।
3x-3x-3y-y=9-8
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x-3y=9 बाट 3x+y=8 घटाउनुहोस्।
-3y-y=9-8
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
-4y=9-8
-y मा -3y जोड्नुहोस्
-4y=1
-8 मा 9 जोड्नुहोस्
y=-\frac{1}{4}
दुबैतिर -4 ले भाग गर्नुहोस्।
3x-\frac{1}{4}=8
3x+y=8 मा y लाई -\frac{1}{4} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x=\frac{33}{4}
समीकरणको दुबैतिर \frac{1}{4} जोड्नुहोस्।
x=\frac{11}{4}
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{11}{4},y=-\frac{1}{4}
अब प्रणाली समाधान भएको छ।