मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x-y-2x=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
-x-y=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
-x-y=0,2x+y=16
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-x-y=0
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-x=y
समीकरणको दुबैतिर y जोड्नुहोस्।
x=-y
दुबैतिर -1 ले भाग गर्नुहोस्।
2\left(-1\right)y+y=16
-y लाई x ले अर्को समीकरण 2x+y=16 मा प्रतिस्थापन गर्नुहोस्।
-2y+y=16
2 लाई -y पटक गुणन गर्नुहोस्।
-y=16
y मा -2y जोड्नुहोस्
y=-16
दुबैतिर -1 ले भाग गर्नुहोस्।
x=-\left(-16\right)
x=-y मा y लाई -16 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=16
-1 लाई -16 पटक गुणन गर्नुहोस्।
x=16,y=-16
अब प्रणाली समाधान भएको छ।
x-y-2x=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
-x-y=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
-x-y=0,2x+y=16
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-1&-1\\2&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\2&1\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&-\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\-2&-1\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-16\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
x=16,y=-16
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-y-2x=0
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2x घटाउनुहोस्।
-x-y=0
-x प्राप्त गर्नको लागि x र -2x लाई संयोजन गर्नुहोस्।
-x-y=0,2x+y=16
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\left(-1\right)x+2\left(-1\right)y=0,-2x-y=-16
-x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -1 ले गुणन गर्नुहोस्।
-2x-2y=0,-2x-y=-16
सरल गर्नुहोस्।
-2x+2x-2y+y=16
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x-2y=0 बाट -2x-y=-16 घटाउनुहोस्।
-2y+y=16
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
-y=16
y मा -2y जोड्नुहोस्
y=-16
दुबैतिर -1 ले भाग गर्नुहोस्।
2x-16=16
2x+y=16 मा y लाई -16 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x=32
समीकरणको दुबैतिर 16 जोड्नुहोस्।
x=16
दुबैतिर 2 ले भाग गर्नुहोस्।
x=16,y=-16
अब प्रणाली समाधान भएको छ।