मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x-3y=2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3y घटाउनुहोस्।
x-3y=2,x+3y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x-3y=2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=3y+2
समीकरणको दुबैतिर 3y जोड्नुहोस्।
3y+2+3y=8
3y+2 लाई x ले अर्को समीकरण x+3y=8 मा प्रतिस्थापन गर्नुहोस्।
6y+2=8
3y मा 3y जोड्नुहोस्
6y=6
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
y=1
दुबैतिर 6 ले भाग गर्नुहोस्।
x=3+2
x=3y+2 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=5
3 मा 2 जोड्नुहोस्
x=5,y=1
अब प्रणाली समाधान भएको छ।
x-3y=2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3y घटाउनुहोस्।
x-3y=2,x+3y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&-3\\1&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\times 8\\-\frac{1}{6}\times 2+\frac{1}{6}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=5,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x-3y=2
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 3y घटाउनुहोस्।
x-3y=2,x+3y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
x-x-3y-3y=2-8
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर x-3y=2 बाट x+3y=8 घटाउनुहोस्।
-3y-3y=2-8
-x मा x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै x र -x राशी रद्द हुन्छन्।
-6y=2-8
-3y मा -3y जोड्नुहोस्
-6y=-6
-8 मा 2 जोड्नुहोस्
y=1
दुबैतिर -6 ले भाग गर्नुहोस्।
x+3=8
x+3y=8 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=5
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=5,y=1
अब प्रणाली समाधान भएको छ।