मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x+y=1,3x+y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x+y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=-y+1
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{5}\left(-y+1\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{1}{5}y+\frac{1}{5}
\frac{1}{5} लाई -y+1 पटक गुणन गर्नुहोस्।
3\left(-\frac{1}{5}y+\frac{1}{5}\right)+y=-1
\frac{-y+1}{5} लाई x ले अर्को समीकरण 3x+y=-1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{5}y+\frac{3}{5}+y=-1
3 लाई \frac{-y+1}{5} पटक गुणन गर्नुहोस्।
\frac{2}{5}y+\frac{3}{5}=-1
y मा -\frac{3y}{5} जोड्नुहोस्
\frac{2}{5}y=-\frac{8}{5}
समीकरणको दुबैतिरबाट \frac{3}{5} घटाउनुहोस्।
y=-4
समीकरणको दुबैतिर \frac{2}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{5}\left(-4\right)+\frac{1}{5}
x=-\frac{1}{5}y+\frac{1}{5} मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{4+1}{5}
-\frac{1}{5} लाई -4 पटक गुणन गर्नुहोस्।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{5} लाई \frac{4}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=-4
अब प्रणाली समाधान भएको छ।
5x+y=1,3x+y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}5&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&1\\3&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-3}&-\frac{1}{5-3}\\-\frac{3}{5-3}&\frac{5}{5-3}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{3}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}1\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}-\frac{1}{2}\left(-1\right)\\-\frac{3}{2}+\frac{5}{2}\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=-4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x+y=1,3x+y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5x-3x+y-y=1+1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5x+y=1 बाट 3x+y=-1 घटाउनुहोस्।
5x-3x=1+1
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
2x=1+1
-3x मा 5x जोड्नुहोस्
2x=2
1 मा 1 जोड्नुहोस्
x=1
दुबैतिर 2 ले भाग गर्नुहोस्।
3+y=-1
3x+y=-1 मा x लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-4
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
x=1,y=-4
अब प्रणाली समाधान भएको छ।