\left\{ \begin{array} { l } { 5 x + 2 y = - 6 } \\ { 2 x + 5 y = 8 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x = -\frac{46}{21} = -2\frac{4}{21} \approx -2.19047619
y = \frac{52}{21} = 2\frac{10}{21} \approx 2.476190476
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
5x+2y=-6,2x+5y=8
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x+2y=-6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=-2y-6
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
x=\frac{1}{5}\left(-2y-6\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{2}{5}y-\frac{6}{5}
\frac{1}{5} लाई -2y-6 पटक गुणन गर्नुहोस्।
2\left(-\frac{2}{5}y-\frac{6}{5}\right)+5y=8
\frac{-2y-6}{5} लाई x ले अर्को समीकरण 2x+5y=8 मा प्रतिस्थापन गर्नुहोस्।
-\frac{4}{5}y-\frac{12}{5}+5y=8
2 लाई \frac{-2y-6}{5} पटक गुणन गर्नुहोस्।
\frac{21}{5}y-\frac{12}{5}=8
5y मा -\frac{4y}{5} जोड्नुहोस्
\frac{21}{5}y=\frac{52}{5}
समीकरणको दुबैतिर \frac{12}{5} जोड्नुहोस्।
y=\frac{52}{21}
समीकरणको दुबैतिर \frac{21}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{2}{5}\times \frac{52}{21}-\frac{6}{5}
x=-\frac{2}{5}y-\frac{6}{5} मा y लाई \frac{52}{21} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{104}{105}-\frac{6}{5}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{2}{5} लाई \frac{52}{21} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=-\frac{46}{21}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -\frac{6}{5} लाई -\frac{104}{105} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-\frac{46}{21},y=\frac{52}{21}
अब प्रणाली समाधान भएको छ।
5x+2y=-6,2x+5y=8
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\8\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}5&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&2\\2&5\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\8\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-2\times 2}&-\frac{2}{5\times 5-2\times 2}\\-\frac{2}{5\times 5-2\times 2}&\frac{5}{5\times 5-2\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&-\frac{2}{21}\\-\frac{2}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-6\\8\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-6\right)-\frac{2}{21}\times 8\\-\frac{2}{21}\left(-6\right)+\frac{5}{21}\times 8\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{46}{21}\\\frac{52}{21}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-\frac{46}{21},y=\frac{52}{21}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x+2y=-6,2x+5y=8
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2\times 5x+2\times 2y=2\left(-6\right),5\times 2x+5\times 5y=5\times 8
5x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
10x+4y=-12,10x+25y=40
सरल गर्नुहोस्।
10x-10x+4y-25y=-12-40
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 10x+4y=-12 बाट 10x+25y=40 घटाउनुहोस्।
4y-25y=-12-40
-10x मा 10x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 10x र -10x राशी रद्द हुन्छन्।
-21y=-12-40
-25y मा 4y जोड्नुहोस्
-21y=-52
-40 मा -12 जोड्नुहोस्
y=\frac{52}{21}
दुबैतिर -21 ले भाग गर्नुहोस्।
2x+5\times \frac{52}{21}=8
2x+5y=8 मा y लाई \frac{52}{21} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+\frac{260}{21}=8
5 लाई \frac{52}{21} पटक गुणन गर्नुहोस्।
2x=-\frac{92}{21}
समीकरणको दुबैतिरबाट \frac{260}{21} घटाउनुहोस्।
x=-\frac{46}{21}
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{46}{21},y=\frac{52}{21}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}