\left\{ \begin{array} { l } { 5 = 3 k + b } \\ { - 9 = - 4 k + b } \end{array} \right.
k, b को लागि हल गर्नुहोस्
k=2
b=-1
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3k+b=5
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-4k+b=-9
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3k+b=5,-4k+b=-9
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3k+b=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको k लाई अलग गरी k का लागि हल गर्नुहोस्।
3k=-b+5
समीकरणको दुबैतिरबाट b घटाउनुहोस्।
k=\frac{1}{3}\left(-b+5\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
k=-\frac{1}{3}b+\frac{5}{3}
\frac{1}{3} लाई -b+5 पटक गुणन गर्नुहोस्।
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
\frac{-b+5}{3} लाई k ले अर्को समीकरण -4k+b=-9 मा प्रतिस्थापन गर्नुहोस्।
\frac{4}{3}b-\frac{20}{3}+b=-9
-4 लाई \frac{-b+5}{3} पटक गुणन गर्नुहोस्।
\frac{7}{3}b-\frac{20}{3}=-9
b मा \frac{4b}{3} जोड्नुहोस्
\frac{7}{3}b=-\frac{7}{3}
समीकरणको दुबैतिर \frac{20}{3} जोड्नुहोस्।
b=-1
समीकरणको दुबैतिर \frac{7}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
k=-\frac{1}{3}b+\frac{5}{3} मा b लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले k लाई सिधै हल गर्न सक्नुहुन्छ।
k=\frac{1+5}{3}
-\frac{1}{3} लाई -1 पटक गुणन गर्नुहोस्।
k=2
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{5}{3} लाई \frac{1}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
k=2,b=-1
अब प्रणाली समाधान भएको छ।
3k+b=5
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-4k+b=-9
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3k+b=5,-4k+b=-9
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&1\\-4&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
k=2,b=-1
मेट्रिक्स तत्त्वहरू k र b लाई ता्नुहोस्।
3k+b=5
पहिलो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
-4k+b=-9
दोस्रो समीकरणलाई मनन गर्नुहोस्। साइडहरू बदल्नुहोस् जसले गर्दा सबै चर पदहरू बायाँ साइडमा आउनेछन्।
3k+b=5,-4k+b=-9
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3k+4k+b-b=5+9
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3k+b=5 बाट -4k+b=-9 घटाउनुहोस्।
3k+4k=5+9
-b मा b जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै b र -b राशी रद्द हुन्छन्।
7k=5+9
4k मा 3k जोड्नुहोस्
7k=14
9 मा 5 जोड्नुहोस्
k=2
दुबैतिर 7 ले भाग गर्नुहोस्।
-4\times 2+b=-9
-4k+b=-9 मा k लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले b लाई सिधै हल गर्न सक्नुहुन्छ।
-8+b=-9
-4 लाई 2 पटक गुणन गर्नुहोस्।
b=-1
समीकरणको दुबैतिर 8 जोड्नुहोस्।
k=2,b=-1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}