\left\{ \begin{array} { l } { 4 x + y = 3 } \\ { 3 x - 3 y = - 1 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=\frac{8}{15}\approx 0.533333333
y=\frac{13}{15}\approx 0.866666667
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
4x+y=3,3x-3y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x+y=3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=-y+3
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{4}\left(-y+3\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{1}{4}y+\frac{3}{4}
\frac{1}{4} लाई -y+3 पटक गुणन गर्नुहोस्।
3\left(-\frac{1}{4}y+\frac{3}{4}\right)-3y=-1
\frac{-y+3}{4} लाई x ले अर्को समीकरण 3x-3y=-1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{3}{4}y+\frac{9}{4}-3y=-1
3 लाई \frac{-y+3}{4} पटक गुणन गर्नुहोस्।
-\frac{15}{4}y+\frac{9}{4}=-1
-3y मा -\frac{3y}{4} जोड्नुहोस्
-\frac{15}{4}y=-\frac{13}{4}
समीकरणको दुबैतिरबाट \frac{9}{4} घटाउनुहोस्।
y=\frac{13}{15}
समीकरणको दुबैतिर -\frac{15}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{4}\times \frac{13}{15}+\frac{3}{4}
x=-\frac{1}{4}y+\frac{3}{4} मा y लाई \frac{13}{15} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{13}{60}+\frac{3}{4}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{1}{4} लाई \frac{13}{15} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{8}{15}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{3}{4} लाई -\frac{13}{60} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=\frac{8}{15},y=\frac{13}{15}
अब प्रणाली समाधान भएको छ।
4x+y=3,3x-3y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}4&1\\3&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&1\\3&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&-3\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4\left(-3\right)-3}&-\frac{1}{4\left(-3\right)-3}\\-\frac{3}{4\left(-3\right)-3}&\frac{4}{4\left(-3\right)-3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{15}\\\frac{1}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 3+\frac{1}{15}\left(-1\right)\\\frac{1}{5}\times 3-\frac{4}{15}\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{15}\\\frac{13}{15}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{8}{15},y=\frac{13}{15}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x+y=3,3x-3y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 4x+3y=3\times 3,4\times 3x+4\left(-3\right)y=4\left(-1\right)
4x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
12x+3y=9,12x-12y=-4
सरल गर्नुहोस्।
12x-12x+3y+12y=9+4
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 12x+3y=9 बाट 12x-12y=-4 घटाउनुहोस्।
3y+12y=9+4
-12x मा 12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 12x र -12x राशी रद्द हुन्छन्।
15y=9+4
12y मा 3y जोड्नुहोस्
15y=13
4 मा 9 जोड्नुहोस्
y=\frac{13}{15}
दुबैतिर 15 ले भाग गर्नुहोस्।
3x-3\times \frac{13}{15}=-1
3x-3y=-1 मा y लाई \frac{13}{15} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x-\frac{13}{5}=-1
-3 लाई \frac{13}{15} पटक गुणन गर्नुहोस्।
3x=\frac{8}{5}
समीकरणको दुबैतिर \frac{13}{5} जोड्नुहोस्।
x=\frac{8}{15}
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{8}{15},y=\frac{13}{15}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}