मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

4x+3y=11,3x-7y=-1
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
4x+3y=11
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
4x=-3y+11
समीकरणको दुबैतिरबाट 3y घटाउनुहोस्।
x=\frac{1}{4}\left(-3y+11\right)
दुबैतिर 4 ले भाग गर्नुहोस्।
x=-\frac{3}{4}y+\frac{11}{4}
\frac{1}{4} लाई -3y+11 पटक गुणन गर्नुहोस्।
3\left(-\frac{3}{4}y+\frac{11}{4}\right)-7y=-1
\frac{-3y+11}{4} लाई x ले अर्को समीकरण 3x-7y=-1 मा प्रतिस्थापन गर्नुहोस्।
-\frac{9}{4}y+\frac{33}{4}-7y=-1
3 लाई \frac{-3y+11}{4} पटक गुणन गर्नुहोस्।
-\frac{37}{4}y+\frac{33}{4}=-1
-7y मा -\frac{9y}{4} जोड्नुहोस्
-\frac{37}{4}y=-\frac{37}{4}
समीकरणको दुबैतिरबाट \frac{33}{4} घटाउनुहोस्।
y=1
समीकरणको दुबैतिर -\frac{37}{4} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=\frac{-3+11}{4}
x=-\frac{3}{4}y+\frac{11}{4} मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=2
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{11}{4} लाई -\frac{3}{4} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=2,y=1
अब प्रणाली समाधान भएको छ।
4x+3y=11,3x-7y=-1
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}4&3\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-1\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}4&3\\3&-7\end{matrix}\right))\left(\begin{matrix}4&3\\3&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-7\end{matrix}\right))\left(\begin{matrix}11\\-1\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}4&3\\3&-7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-7\end{matrix}\right))\left(\begin{matrix}11\\-1\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-7\end{matrix}\right))\left(\begin{matrix}11\\-1\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4\left(-7\right)-3\times 3}&-\frac{3}{4\left(-7\right)-3\times 3}\\-\frac{3}{4\left(-7\right)-3\times 3}&\frac{4}{4\left(-7\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}11\\-1\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{37}&\frac{3}{37}\\\frac{3}{37}&-\frac{4}{37}\end{matrix}\right)\left(\begin{matrix}11\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{37}\times 11+\frac{3}{37}\left(-1\right)\\\frac{3}{37}\times 11-\frac{4}{37}\left(-1\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
4x+3y=11,3x-7y=-1
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3\times 4x+3\times 3y=3\times 11,4\times 3x+4\left(-7\right)y=4\left(-1\right)
4x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 4 ले गुणन गर्नुहोस्।
12x+9y=33,12x-28y=-4
सरल गर्नुहोस्।
12x-12x+9y+28y=33+4
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 12x+9y=33 बाट 12x-28y=-4 घटाउनुहोस्।
9y+28y=33+4
-12x मा 12x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 12x र -12x राशी रद्द हुन्छन्।
37y=33+4
28y मा 9y जोड्नुहोस्
37y=37
4 मा 33 जोड्नुहोस्
y=1
दुबैतिर 37 ले भाग गर्नुहोस्।
3x-7=-1
3x-7y=-1 मा y लाई 1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x=6
समीकरणको दुबैतिर 7 जोड्नुहोस्।
x=2
दुबैतिर 3 ले भाग गर्नुहोस्।
x=2,y=1
अब प्रणाली समाधान भएको छ।