\left\{ \begin{array} { l } { 3 x - 2 y - 2 = 6 } \\ { 3 x + 2 y = 4 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=2
y=-1
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x-2y-2=6,3x+2y=4
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x-2y-2=6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x-2y=8
समीकरणको दुबैतिर 2 जोड्नुहोस्।
3x=2y+8
समीकरणको दुबैतिर 2y जोड्नुहोस्।
x=\frac{1}{3}\left(2y+8\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{2}{3}y+\frac{8}{3}
\frac{1}{3} लाई 8+2y पटक गुणन गर्नुहोस्।
3\left(\frac{2}{3}y+\frac{8}{3}\right)+2y=4
\frac{8+2y}{3} लाई x ले अर्को समीकरण 3x+2y=4 मा प्रतिस्थापन गर्नुहोस्।
2y+8+2y=4
3 लाई \frac{8+2y}{3} पटक गुणन गर्नुहोस्।
4y+8=4
2y मा 2y जोड्नुहोस्
4y=-4
समीकरणको दुबैतिरबाट 8 घटाउनुहोस्।
y=-1
दुबैतिर 4 ले भाग गर्नुहोस्।
x=\frac{2}{3}\left(-1\right)+\frac{8}{3}
x=\frac{2}{3}y+\frac{8}{3} मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-2+8}{3}
\frac{2}{3} लाई -1 पटक गुणन गर्नुहोस्।
x=2
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{8}{3} लाई -\frac{2}{3} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=2,y=-1
अब प्रणाली समाधान भएको छ।
3x-2y-2=6,3x+2y=4
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&-2\\3&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\times 3\right)}&-\frac{-2}{3\times 2-\left(-2\times 3\right)}\\-\frac{3}{3\times 2-\left(-2\times 3\right)}&\frac{3}{3\times 2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 8+\frac{1}{6}\times 4\\-\frac{1}{4}\times 8+\frac{1}{4}\times 4\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
हिसाब गर्नुहोस्।
x=2,y=-1
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-2y-2=6,3x+2y=4
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x-3x-2y-2y-2=6-4
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x-2y-2=6 बाट 3x+2y=4 घटाउनुहोस्।
-2y-2y-2=6-4
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
-4y-2=6-4
-2y मा -2y जोड्नुहोस्
-4y-2=2
-4 मा 6 जोड्नुहोस्
-4y=4
समीकरणको दुबैतिर 2 जोड्नुहोस्।
y=-1
दुबैतिर -4 ले भाग गर्नुहोस्।
3x+2\left(-1\right)=4
3x+2y=4 मा y लाई -1 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x-2=4
2 लाई -1 पटक गुणन गर्नुहोस्।
3x=6
समीकरणको दुबैतिर 2 जोड्नुहोस्।
x=2
दुबैतिर 3 ले भाग गर्नुहोस्।
x=2,y=-1
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}