\left\{ \begin{array} { l } { 3 x + y = 6 } \\ { x + 3 y = 6 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x+y=6,x+3y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
3x+y=6
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
3x=-y+6
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{3}\left(-y+6\right)
दुबैतिर 3 ले भाग गर्नुहोस्।
x=-\frac{1}{3}y+2
\frac{1}{3} लाई -y+6 पटक गुणन गर्नुहोस्।
-\frac{1}{3}y+2+3y=6
-\frac{y}{3}+2 लाई x ले अर्को समीकरण x+3y=6 मा प्रतिस्थापन गर्नुहोस्।
\frac{8}{3}y+2=6
3y मा -\frac{y}{3} जोड्नुहोस्
\frac{8}{3}y=4
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
y=\frac{3}{2}
समीकरणको दुबैतिर \frac{8}{3} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{3}\times \frac{3}{2}+2
x=-\frac{1}{3}y+2 मा y लाई \frac{3}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{1}{2}+2
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{1}{3} लाई \frac{3}{2} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{3}{2}
-\frac{1}{2} मा 2 जोड्नुहोस्
x=\frac{3}{2},y=\frac{3}{2}
अब प्रणाली समाधान भएको छ।
3x+y=6,x+3y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}3&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}3&1\\1&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-1}&-\frac{1}{3\times 3-1}\\-\frac{1}{3\times 3-1}&\frac{3}{3\times 3-1}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 6-\frac{1}{8}\times 6\\-\frac{1}{8}\times 6+\frac{3}{8}\times 6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{3}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{3}{2},y=\frac{3}{2}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x+y=6,x+3y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+y=6,3x+3\times 3y=3\times 6
3x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस्।
3x+y=6,3x+9y=18
सरल गर्नुहोस्।
3x-3x+y-9y=6-18
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+y=6 बाट 3x+9y=18 घटाउनुहोस्।
y-9y=6-18
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
-8y=6-18
-9y मा y जोड्नुहोस्
-8y=-12
-18 मा 6 जोड्नुहोस्
y=\frac{3}{2}
दुबैतिर -8 ले भाग गर्नुहोस्।
x+3\times \frac{3}{2}=6
x+3y=6 मा y लाई \frac{3}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+\frac{9}{2}=6
3 लाई \frac{3}{2} पटक गुणन गर्नुहोस्।
x=\frac{3}{2}
समीकरणको दुबैतिरबाट \frac{9}{2} घटाउनुहोस्।
x=\frac{3}{2},y=\frac{3}{2}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}