\left\{ \begin{array} { l } { 2 x - y = 4 x - 3 } \\ { 2 ( x + y ) = 1 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y=-2
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-y-4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4x घटाउनुहोस्।
-2x-y=-3
-2x प्राप्त गर्नको लागि 2x र -4x लाई संयोजन गर्नुहोस्।
x+y=\frac{1}{2}
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबैतिर 2 ले भाग गर्नुहोस्।
-2x-y=-3,x+y=\frac{1}{2}
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-2x-y=-3
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-2x=y-3
समीकरणको दुबैतिर y जोड्नुहोस्।
x=-\frac{1}{2}\left(y-3\right)
दुबैतिर -2 ले भाग गर्नुहोस्।
x=-\frac{1}{2}y+\frac{3}{2}
-\frac{1}{2} लाई y-3 पटक गुणन गर्नुहोस्।
-\frac{1}{2}y+\frac{3}{2}+y=\frac{1}{2}
\frac{-y+3}{2} लाई x ले अर्को समीकरण x+y=\frac{1}{2} मा प्रतिस्थापन गर्नुहोस्।
\frac{1}{2}y+\frac{3}{2}=\frac{1}{2}
y मा -\frac{y}{2} जोड्नुहोस्
\frac{1}{2}y=-1
समीकरणको दुबैतिरबाट \frac{3}{2} घटाउनुहोस्।
y=-2
दुबैतिर 2 ले गुणन गर्नुहोस्।
x=-\frac{1}{2}\left(-2\right)+\frac{3}{2}
x=-\frac{1}{2}y+\frac{3}{2} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=1+\frac{3}{2}
-\frac{1}{2} लाई -2 पटक गुणन गर्नुहोस्।
x=\frac{5}{2}
1 मा \frac{3}{2} जोड्नुहोस्
x=\frac{5}{2},y=-2
अब प्रणाली समाधान भएको छ।
2x-y-4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4x घटाउनुहोस्।
-2x-y=-3
-2x प्राप्त गर्नको लागि 2x र -4x लाई संयोजन गर्नुहोस्।
x+y=\frac{1}{2}
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबैतिर 2 ले भाग गर्नुहोस्।
-2x-y=-3,x+y=\frac{1}{2}
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-2&-1\\1&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&-\frac{2}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)-\frac{1}{2}\\-3+2\times \frac{1}{2}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{5}{2},y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-y-4x=-3
पहिलो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 4x घटाउनुहोस्।
-2x-y=-3
-2x प्राप्त गर्नको लागि 2x र -4x लाई संयोजन गर्नुहोस्।
x+y=\frac{1}{2}
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबैतिर 2 ले भाग गर्नुहोस्।
-2x-y=-3,x+y=\frac{1}{2}
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2x-y=-3,-2x-2y=-2\times \frac{1}{2}
-2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -2 ले गुणन गर्नुहोस्।
-2x-y=-3,-2x-2y=-1
सरल गर्नुहोस्।
-2x+2x-y+2y=-3+1
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x-y=-3 बाट -2x-2y=-1 घटाउनुहोस्।
-y+2y=-3+1
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
y=-3+1
2y मा -y जोड्नुहोस्
y=-2
1 मा -3 जोड्नुहोस्
x-2=\frac{1}{2}
x+y=\frac{1}{2} मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{5}{2}
समीकरणको दुबैतिर 2 जोड्नुहोस्।
x=\frac{5}{2},y=-2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}