\left\{ \begin{array} { l } { 2 x - 7 y = 8 } \\ { y - 2 x = - 3.20 } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=1.2
y=-0.8
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
2x-7y=8,-2x+y=-3.2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x-7y=8
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=7y+8
समीकरणको दुबैतिर 7y जोड्नुहोस्।
x=\frac{1}{2}\left(7y+8\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=\frac{7}{2}y+4
\frac{1}{2} लाई 7y+8 पटक गुणन गर्नुहोस्।
-2\left(\frac{7}{2}y+4\right)+y=-3.2
\frac{7y}{2}+4 लाई x ले अर्को समीकरण -2x+y=-3.2 मा प्रतिस्थापन गर्नुहोस्।
-7y-8+y=-3.2
-2 लाई \frac{7y}{2}+4 पटक गुणन गर्नुहोस्।
-6y-8=-3.2
y मा -7y जोड्नुहोस्
-6y=4.8
समीकरणको दुबैतिर 8 जोड्नुहोस्।
y=-0.8
दुबैतिर -6 ले भाग गर्नुहोस्।
x=\frac{7}{2}\left(-0.8\right)+4
x=\frac{7}{2}y+4 मा y लाई -0.8 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{14}{5}+4
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{7}{2} लाई -0.8 पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
x=\frac{6}{5}
-\frac{14}{5} मा 4 जोड्नुहोस्
x=\frac{6}{5},y=-0.8
अब प्रणाली समाधान भएको छ।
2x-7y=8,-2x+y=-3.2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-3.2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&-7\\-2&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-7\left(-2\right)\right)}&-\frac{-7}{2-\left(-7\left(-2\right)\right)}\\-\frac{-2}{2-\left(-7\left(-2\right)\right)}&\frac{2}{2-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-3.2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{7}{12}\\-\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}8\\-3.2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\times 8-\frac{7}{12}\left(-3.2\right)\\-\frac{1}{6}\times 8-\frac{1}{6}\left(-3.2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\-\frac{4}{5}\end{matrix}\right)
हिसाब गर्नुहोस्।
x=\frac{6}{5},y=-\frac{4}{5}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
2x-7y=8,-2x+y=-3.2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2\times 2x-2\left(-7\right)y=-2\times 8,2\left(-2\right)x+2y=2\left(-3.2\right)
2x र -2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस्।
-4x+14y=-16,-4x+2y=-6.4
सरल गर्नुहोस्।
-4x+4x+14y-2y=-16+6.4
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -4x+14y=-16 बाट -4x+2y=-6.4 घटाउनुहोस्।
14y-2y=-16+6.4
4x मा -4x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -4x र 4x राशी रद्द हुन्छन्।
12y=-16+6.4
-2y मा 14y जोड्नुहोस्
12y=-9.6
6.4 मा -16 जोड्नुहोस्
y=-\frac{4}{5}
दुबैतिर 12 ले भाग गर्नुहोस्।
-2x-\frac{4}{5}=-3.2
-2x+y=-3.2 मा y लाई -\frac{4}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-2x=-\frac{12}{5}
समीकरणको दुबैतिर \frac{4}{5} जोड्नुहोस्।
x=\frac{6}{5}
दुबैतिर -2 ले भाग गर्नुहोस्।
x=\frac{6}{5},y=-\frac{4}{5}
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}